導航:首頁 > 文件處理 > 壓縮感知與機器學習

壓縮感知與機器學習

發布時間:2023-08-17 08:47:59

A. 稀疏度為1的信號,用壓縮感知恢復原始信號,匹配追蹤演算法(MP)和正交匹配追蹤演算法(OMP)的結果一樣嗎

壓縮感知(Compressed Sensing, CS)[1]理論具有全新的信號獲取和處理方式,該理論解決了傳統的Nyquist方法采樣頻率較高的問題,大大降低了稀疏信號精確重構所需的采樣頻率。
另外,CS理論在數據採集的同時完成數據壓縮,從而節約了軟、硬體資源及處理時間。
這些突出優點使其在信號處理領域有著廣闊的應用前景!

B. 學習了哪些知識,計算機視覺才算入門

計算機視覺是一個很大的范疇的總和,有兩種學習方式,一種是閱讀基礎書,搞懂它的每一部分;另一種是找一個問題,看文獻,編程實現,不斷往深走。這兩種學習方式是互補的,如果你看了好幾年書還不能上手解決問題,或者只會解決某些很特殊的問題,對其他問題束手無策都不算成功。因此你需要把看書掌握一般知識和編程實驗解決具體問題齊頭並進。下面說你要干什麼:

下載安裝OpenCV2

OpenCV是一個非常強大的計算機視覺庫,包括了圖像處理、計算機視覺、模式識別、多視圖幾何的許多基本演算法,有c++和Python兩種介面。學習的材料首先是安裝目錄下doc文件夾里的幫助文檔,提供所有函數的用法,任何時候對任何函數有疑問請查閱幫助文檔,安裝目錄下還提供一大堆寫好的演示程序供參考;《OpenCV_2 Computer Vision Application Programming Cookbook》是一本比較基礎的介紹材料,它的缺點是沒有介紹分類器(模式識別)方面的函數怎麼用。

雖然網上還有其他很多流行的庫,比如處理特徵點的VLfeat,處理點雲的PCL,處理GPU運算的CUDA,處理機器人問題的ROS和MRPT,但是這些都是你在解決具體問題時才會考慮去用的東西,如果你想快速讀取視頻、做個屏幕交互程序、使用流行的分類器、提取特徵點、對圖像做處理、進行雙目重建,OpenCV都提供相應函數,因此在你不知道該把餘生用來干什麼的時候,先裝OpenCV學習。

讀綜述

Computer Vision: Algorithms and Application。這本書用1000頁篇幅圖文並茂地瀏覽了計算機視覺這門學科的諸多大方向,如果你不知道計算機視覺是一門搞什麼的學科,這本書是你絕佳的選擇。它的優點是涉獵了大量文獻,缺點是缺乏細節,因此很顯然只讀這本書你根本沒法上手工作,因為它講的實在是太粗糙了。如果你對其中的某一部分感興趣,就請去讀相關文獻,繼續往下走,這就是這本書的意義。有中文版,但是翻譯的不好,也不建議你細細去讀,看看裡面的圖片即可。

Computer Vision: Models, Learning, and Inference:這本書是我認為研究生和高年級本科生入門計算機視覺最好的教材。它內容豐富,難度適中,推導翔實,語言流暢,強烈推薦你花2個月時間把這本書讀完。

多視圖幾何

Multiple View Geometry in Computer Vision:這本書是多視圖幾何的聖經,意思就是說想搞三維重建或者圖像測量之類的項目,這本書是必讀的。它需要你有線性代數的基本知識,會SVD分解即可。第一版有中文版,翻譯的非常好,但是已經絕版了,可以上淘寶高價買一本,第二版添加的內容很少,在網上可以下載到。

模式識別

模式識別核心就是訓練一個函數來擬合手頭的數據,如果數據的標簽是離散的,稱為分類問題,如數據的標簽是連續的,稱為回歸問題;分類又分有監督分類和無監督分類,有監督分類器有神經網路、支持向量機、AdaBoost、隨機場、樹模型等等。當你拿到一大堆數據,需要從裡面找關系的時候,一般都需要使用模式識別演算法來訓練一個函數/分類器/模型,因此模式識別是機器學習的核心。
《模式分類(第二版)》:這是一本適合普通讀者閱讀的教材,介紹了模式識別中經典的分類器,講解細致,語言生動,難度適中,每一個演算法都有偽代碼。

The Elements of Statistical Learning:這本書使用嚴謹的數學工具分析模式識別演算法,它比較難,但是非常深刻。每拿到一個模型它都會分析這個模型在數學上是如何構造的,並且推導模型的分類錯誤率。分析和推導是這本書的精髓。

Pattern Recognition and Machine Learning:這是一本從貝葉斯學派的角度分析模式識別模型的書,它使用的工具主要是概率論,比較難,非常深刻,內容非常豐富。

雖然這兩本書很難,但是它們用到的數學知識不過是基本的概率論和線性代數,只是用的比較活,計算機視覺這個學科需要的數學知識也是這個水平。

圖形學

圖形學教材首先推薦《計算機圖形學與幾何造型導論》,這本書用流暢的語言介紹了圖形學的基礎知識,選材有趣,推導簡潔但是絕不跳步走,保證你能看懂而且不會看煩。

光線追蹤器我看過一本薄的《Realistic Ray Tracing》和一本厚的《Ray Tracing from the Ground Up》,兩本書都有代碼。後一本內容極其豐富,有中文版,翻譯尚可。後一本唯一的缺點就是講不清楚BRDF,但這恰恰是前一本的亮點。

還有一些比較偏的書,比如偏微分方程在圖像處理中的應用、細分、壓縮感知、馬爾科夫隨機場、超解析度分析,概率機器人、多尺度幾何分析,這些領域都有各自的名著,你在某個領域深挖的時候,類似這樣的書可能會出現在參考文獻中,那時再看不遲。

讀文獻
寫到書里的知識基本上都有些過時,你得通過看文獻掌握各個領域最新的發展動態。計算機視覺的頂級期刊有兩個PAMI和IJCV,頂級會議有ICCV和CVPR,在科學網—[轉載]計算機視覺方向的一些頂級會議和期刊有更加詳細的介紹。

C. 奈奎斯特采樣定理與壓縮感知

姓名:蘇彥愷

學號:14020150008

【嵌牛導讀】:傳統的奈奎斯特采樣定律隨著數字信號處理技術的發展,其缺陷以及應用上的不便日漸凸顯,壓縮感知技術應運而生。本文依據《數字信號處理》課程所學,對奈奎斯特采樣定理進行了原理以及上的概述,同時在本文的後半部分,對壓縮感知這一新式的信號處理技術進行了簡單介紹。在本文的末尾,依據奈奎斯特采樣定理與壓縮感知原理上的異同進行了優缺點的分析,同時對壓縮感知的發展進行了展望。

【嵌牛鼻子】:數字信號處理;奈奎斯特采樣定理;壓縮感知;稀疏矩陣

【嵌牛提問】:什麼是壓縮感知?與傳統的奈奎斯特采樣定理相比,壓縮感知有什麼樣的特點和優勢?

【嵌牛正文】:

奈奎斯特采樣定理部分

一、概述

在數字信號處理領域中,采樣定理是連續時間信號(通常稱為「模擬信號」)和離散時間信號(通常稱為「數字信號」)之間的基本橋梁。該定理說明采樣頻率與信號頻譜之間的關系,是連續信號離散化的基本依據。 它為采樣率建立了一個足夠的條件,該采樣率允許離散采樣序列從有限帶寬的連續時間信號中捕獲所有信息

二、基本原理 :

在進行模擬/數字信號的轉換過程中,當采樣頻率fs.max大於信號中最高頻率fmax的2倍時(fs.max>=2fmax),采樣之後的數字信號完整地保留了原始信號中的信息,一般實際應用中保證采樣頻率為信號最高頻率的5~10倍;采樣定理又稱奈奎斯特定理。

要使實信號采樣後能夠不失真還原,采樣頻率必須大於信號最高頻率的兩倍。

當用采樣頻率F對一個信號進行采樣時,信號中F/2以上的頻率不是消失了,而是對稱的映象到了F/2以下的頻帶中,並且和F/2以下的原有頻率成分疊加起來,這個現象叫做「混疊」(aliasing).

消除混疊的方法有兩種:

1.提高采樣頻率F,即縮小采樣時間間隔.然而實際的信號處理系統不可能達到很大的采樣頻率,處理不了很多的數據.另外,許多信號本身可能含有全頻帶的頻率成分,不可能將采樣頻率提高到無窮大.所以,通過采樣頻率避免混疊是有限制的.

2.採用抗混疊濾波器.在採用頻率F一定的前提下,通過低通濾波器濾掉高於F/2的頻率成分,通過低通濾波器的信號則可避免出現頻率混疊.

公式:C = B * log2 N ( bps )

三、應用

采樣定理通常針對單個變數的函數進行公式化。因此,定理可直接適用於時間相關的信號,並且通常在該上下文中公式化。然而,采樣定理可以以直接的方式擴展到任意多個變數的函數。

灰度圖像通常表示為代表位於行和列采樣位置的交叉處的像素(圖像元素)的相對強度的實數的二維陣列(或矩陣)。因此,圖像需要兩個獨立變數或索引,以指定每個像素唯一一個用於行,一個用於列。

彩色圖像通常由三個單獨的灰度圖像的組合構成,一個代表三原色(紅色,綠色和藍色)或簡稱RGB中的每一個。對於顏色使用3向量的其他顏色空間包括HSV,CIELAB,XYZ等。諸如青色,品紅色,黃色和黑色(CMYK)的一些顏色空間可以通過四維表示顏色。所有這些都被處理為二維采樣域上的向量值函數。

類似於一維離散時間信號,如果采樣解析度或像素密度不足,圖像也可能遭受混疊。例如,具有高頻率(換句話說,條紋之間的距離小)的條紋襯衫的數碼照片可以在襯衫被照相機的圖像感測器采樣時導致襯衫的混淆。對於這種情況,在空間域中采樣的「解決方案」將是更靠近襯衫,使用更高解析度的感測器,或者在用感測器採集圖像之前對圖像進行光學處理

壓縮感知部分

一、概述

壓縮感知(Compressed sensing),也被稱為壓縮采樣(Compressivesampling)或稀疏采樣(Sparse sampling),是一種尋找欠定線性系統的稀疏解的技術。壓縮感知被應用於電子工程尤其是信號處理中,用於獲取和重構稀疏或可壓縮的信號。這個方法利用訊號稀疏的特性,相較於奈奎斯特理論,得以從較少的測量值還原出原來整個欲得知的訊號。MRI就是一個可能使用此方法的應用。這一方法至少已經存在了四十年,由於David Donoho、Emmanuel Candès和陶哲軒的工作,最近這個領域有了長足的發展。近幾年,為了因應即將來臨的第五代移動通信系統,壓縮感知技術也被大量應用在無線通訊系統之中,獲得了大量的關注以及研究。

二、基本原理

為了更好的說明壓縮感知的基本原理,在這里引入奈奎斯特采樣進行比較說明。

如圖2.1所示, 圖b、d為三個餘弦函數信號疊加構成的信號,在頻譜圖(圖a)中只有個峰值。 如果對其進行8倍於全采樣的等間距亞采樣(圖b下方的紅點),則頻域信號周期延拓後,就會發生混疊(圖c),無法從結果中復原出原信號。

而如果採用隨機亞采樣(圖2.2b上方的紅點),那麼這時候頻域就不再是以固定周期進行延拓了,而是會產生大量不相關的干擾值。如圖2.2c,最大的幾個峰值還依稀可見,只是一定程度上被干擾值覆蓋。這些干擾值看上去非常像隨機雜訊,但實際上是由於三個原始信號的非零值發生能量泄露導致的(不同顏色的干擾值表示它們分別是由於對應顏色的原始信號的非零值泄露導致的)。得到如圖2.2d的頻譜圖後,再採用匹配追蹤的演算法,就可以對信號進行恢復。以上就是壓縮感知理論的核心思想——以比奈奎斯特采樣頻率要求的采樣密度更稀疏的密度對信號進行隨機亞采樣,由於頻譜是均勻泄露的,而不是整體延拓的,因此可以通過特別的追蹤方法將原信號恢復。

三、應用

1、全息成像

全息成像是一種記錄被攝物體反射(或透射)光波中全部信息(振幅、相位)的照相技術,而物體反射或者投射的光線可以通過記錄膠片完全重建,通過不同方位和角度觀察照片,可以看到被拍攝的物體的不同的角度,因此記錄得到的想可以使人產生立體視覺。然而全息圖記錄的立體信息非常龐大,在滿足傳統的香農采樣定理進行采樣時很難達到的帶寬及存儲和傳輸這些信息成為限制全息術發展的難題。

壓縮感知技術為傳統的信息采樣傳輸帶來了革命性的突破,為信號的計算和傳輸節省了很大資源。利用壓縮感知可以去掉大量沒有實際意義的信息采樣,通過遠低於傳統采樣樣本點就可以重構出原始信號,解決了全息術在數據存儲和傳輸方面的限制。

2、核磁共振成像

核磁共振成像作為一種極其重要的醫學成像技術,具有對病灶診斷精確、對人體安全性高等優點,但是較長的數據採集時間成為其廣泛應用的瓶頸。因此,在保證成像質量的前提下,探索一種新的快速成像方法迫在眉睫。壓縮感知作為一種全新的信號采樣理論,針對稀疏信號或可壓縮信號,可以在采樣數量遠少於傳統采樣方式的情況下精確地恢復出原始信號,這就為核磁共振圖像的快速獲取提供了一種新的思路。

四、奈奎斯特和壓縮感知的對比

從采樣的角度來看,壓縮感知和基於奈奎斯特采樣定理的傳統信號採集是兩種不同形式的信號採集方式。(壓縮感知打破了傳統信號處理中對於奈奎斯特采樣要求的限制)

1.采樣率:在壓縮感知理論下,信號的采樣率不再取決於信號的帶寬,而是取決於信息在信號中的結構與內容(稀疏性)。關於采樣率的計算方式,壓縮感知是從少量離散測量數據恢復離散數字信號,其計算方式為采樣率=測量值的大小/恢復信號的大小;而傳統信號採集是從離散采樣數據中恢復模擬信號。

2.信號採集方式:傳統采樣理論是通過均勻采樣獲取數據;壓縮感知則通過計算信號與一個觀測函數之間的內積來獲得觀測數據。

3.恢復信號形式:傳統采樣定理關注的對象是無限長的連續信號;壓縮感知是有限維觀測向量空間的向量即離散信號。

4.恢復信號方式:傳統采樣恢復是在奈奎斯特采樣定理的基礎上,通過采樣數據的sinc函數線性內插獲得,而壓縮感知採用的是利用信號的稀疏性,從線性觀測數據中通過求解一個非線性的優化問題來恢復信號的方法。

5.壓縮感知的核心思想:壓縮和采樣合並進行,並且測量值遠小於傳統采樣方法的數據量,突破香農采樣定理的瓶頸,使高解析度的信號採集成為可能。

總結

奈奎斯特采樣定理一直是信號處理領域的金科玉律,但其性能仍沒法滿足諸如全息成像、核磁共振等產生龐大數據的技術的信息恢復。然而在數字信號處理領域進入二十一世紀以後,壓縮感知技術帶來了顛覆性的改變,以比奈奎斯特采樣頻率要求的采樣密度更稀疏的密度對信號進行隨機亞采樣,通過特別的追蹤方法將原信號恢復,使得用於恢復信號的數據量遠少於傳統采樣所需要的數據量。壓縮感知理論的誕生已經對計算科學、信號處理、電子信息等領域產生重大的影響,其理論具有廣闊的應用前景,但仍然不夠完善,希望在今後的研究中能彌補壓縮感知現有的不足,展現其強大的生命力,為更多難題提供新的解決方法。

D. 誰能解釋一下壓縮感知的用途和基本原理

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業的界的廣泛關注。他在資訊理論、圖像處理、地球科學、光學/微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。
壓縮感知理論的核心思想主要包括兩點。
第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。
另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。壓縮感知壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

E. 壓縮感知的圖像處理與應用有哪些

數字圖像處理主要研究的內容有以下幾個方面:1) 圖像變換由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大.因此,往往採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理).目前新興研究的小波變換在時域和頻域中都具有良好的局部化特性,它在圖像處理中也有著廣泛而有效的應用.2) 圖像編碼壓縮圖像編碼壓縮技術可減少描述圖像的數據量(即比特數),以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量.壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行.編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術.3) 圖像增強和復原圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等.圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分.如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響.圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立"降質模型",再採用某種濾波方法,恢復或重建原來的圖像.4) 圖像分割圖像分割是數字圖像處理中的關鍵技術之一.圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎.雖然目前已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用於各種圖像的有效方法.因此,對圖像分割的研究還在不斷深入之中,是目前圖像處理中研究的熱點之一.5) 圖像描述是圖像識別和理解的必要前提.作為最簡單的二值圖像可採用其幾何特性描述物體的特性,一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法.對於特殊的紋理圖像可採用二維紋理特徵描述.隨著圖像處理研究的深入發展,已經開始進行三維物體描述的研究,提出了體積描述、表面描述、廣義圓柱體描述等方法.6) 圖像分類(識別)圖像分類(識別)屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類.圖像分類常採用經典的模式識別方法,有統計模式分類和句法(結構)模式分類,近年來新發展起來的模糊模式識別和人工神經網路模式分類在圖像識別中也越來越受到重視.

閱讀全文

與壓縮感知與機器學習相關的資料

熱點內容
java面向對象編程題目 瀏覽:874
二次元壓縮包 瀏覽:698
stc模擬器編程器 瀏覽:155
伺服器銷售怎麼做好 瀏覽:87
什麼是com編程 瀏覽:848
演算法工程師最新資訊 瀏覽:608
郵政銀行卡怎麼在app簽約綁定 瀏覽:49
壓縮卷一直轉 瀏覽:976
初一編程小程序怎麼做 瀏覽:826
bt軟體文件夾名稱 瀏覽:157
unix創建命令 瀏覽:622
devc是多少位的編譯器 瀏覽:980
怎麼樣能快點升安卓系統 瀏覽:976
奇跡mu用什麼伺服器 瀏覽:605
如何讓軟體在多個安卓系統上運行 瀏覽:575
java判斷半形 瀏覽:881
java判斷正負 瀏覽:321
刷頭條程序員的日常 瀏覽:104
吉林程序員吐槽 瀏覽:244
單片機溫度范圍 瀏覽:421