① 真空和壓縮空氣有什麼區別
你好! 真空:外太空堪稱最接近真空的空間 真空是一種不存在任何物質的空間狀態,是一種物理現象。在「真空」中,聲音因為沒有介質而無法傳遞,但電磁波的傳遞卻不受真空的影響。事實上,在真空技術里舉喚,真空系針對大氣而言,一特定空間內部之部份物質被排出,使其壓力小於一個標准大氣壓,則我們通稱此空間為真空或真空狀態。1真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境里,只有外太空堪稱最接近真空的空 壓縮空氣壓縮空氣,即被外力壓縮的空氣。空氣具有可壓縮性,經空氣壓縮機做機械功使本身體積縮小、壓力提高後的空氣叫壓縮空氣。壓縮空氣是一種重要的動力源。與其它能源比,它具有下列老答敬明顯的特點:清晰透明,輸送方便,沒有特殊的有害性能,沒有起火危險,不怕超負荷,能在許多不利環境下工作侍慎,空氣在地面上到處都有,取之不盡
② 淺析壓縮空氣儲能
壓空屬於物理儲能方式的一種,它與抽水蓄能齊名,無論是存儲時間、放電功率、還是運行壽命,都有著卓越的表現,但它同樣有著自身的缺點,比如系統復雜,比如受地域影響等。
一 壓縮空氣原理
壓縮空氣的基本原理很簡單,在電網負荷低谷期將電能用於壓縮空氣,將空氣高壓密封在報廢礦井、儲氣罐、山洞、過期油氣井或新建儲氣井中,在電網負荷高峰期釋放壓縮空氣推動汽輪機發電的儲能方式,原理如下圖所示。若需要更近一步解釋,你只需鎖定儲氣罐內的空氣即可,兩個動作,充氣時儲存能量,膨脹時釋放能量。
然而,如果你在此處宣布已經掌握了壓空技術,為時過早。要知道,原理不能解決任何問題,需要在原理的基礎上舔磚加瓦,優化利用,才能達到合理的應用標准。於是,壓空的各種變異橫空出世,為了便於理解,我溫度、壓力、容積等方面著手,一步步深入介紹。
1.1 溫度
我先強調一點:溫度是一種能量。對於壓縮機而言,壓縮過程溫度越低,耗費電能越少;與之相反,對於膨脹機而言,膨脹起始點溫度越高,膨脹過程中得到的有用功越多。所以,降低壓縮溫度,或者提高膨脹進氣溫度,是提高系統效率的一種重要而有效的手段。請看下圖變異1,在壓縮機的出口增加了冷卻器,以回收壓縮熱,在膨脹機(或渦輪機)的入口增加回熱器,以提高進氣溫度。回熱器的熱量可由冷卻器供給,如果必要,渦輪機的出口廢棄也可以進一步回收,這取決於廢棄的溫度品味。該系統叫稱為回熱式系統。
相較於原理型系統,回熱系統儲電效率有所增加,然而它的不足在於,冷卻器和回熱器分開設置,在熱量回收過程中存在較大熱損失。為解決這一問題,有人提出絕熱壓縮空氣系統,變異2,參照下圖。將壓縮過程中產生的熱量存儲起來,然後在發電過程中用這部分熱量預熱壓縮空氣,冷卻器和回熱器合為一體,對外進行絕熱處理,業內稱作先進絕熱壓縮空氣儲能系統(AA-CAES),該系統面臨的最大挑戰是如何經濟、有效地設計和製造出壓力工作范圍大的壓縮機、渦輪機和除熱器。
一切比較完美,但還忽略一點,即使100%回收利用,壓縮過程中產生的熱量不足以使渦輪機持續長時間穩定運行,換句話說,只靠自身的熱回收很難保持系統抵抗外部負荷波動。熱量不夠怎麼辦?引進額外熱源,天然氣,將天然氣與來自儲氣罐的高壓空氣混合燃燒,推進渦輪機旋轉發電。請看下圖,變異3。對比以上系統,它的可靠性最高,穩定性最強,靈活性最優,所以在德國1978年建造首套壓空儲能電站時,果斷採用這種方案。然而,變異3的引發的問題在於:消耗化石能源,增加溫室氣體排放。於是在國內做壓空系統的高校研究所想方設法消除對外在熱源的利用,比如清華大學的盧強院士,推非補燃壓空系統。此處必須加句評論,難度都很大,不用補燃,系統復雜程度會提高,可靠性也會有波動,平衡各個功能單元,是一件技術含量很高的工作。
2 壓力
談到這里,如果你站起來宣布掌握了壓空技術,我會告訴你又早了。除了溫度之外,還有一個參數沒有講,壓力!與溫度相比,壓力的影響更加多元。壓縮階段,壓力越高,同等溫度下空氣密度越大,同等體積的儲罐儲存的空氣量更多,儲能密度更高;膨脹階段,初始入口壓力越高,出口壓力越低,有用功輸出越高。
現在的問題來了,能不能只使用一台壓縮機,比如從1個大氣壓直接壓縮到100個atm?膨脹過程從40個atm膨脹到1atm?我可以負責任的告訴你,理論上可以,但如果你真敢這么做,保證系統電-電轉換效率會低的讓你下不來台!如何解決這一問題?熱力學給出的指引是多級壓縮,中間冷卻,可顯著降低壓縮過程中的電力消耗;多級膨脹,中間加熱,可顯著增加膨脹過程中的發電量,綜合起來,儲電效率必然顯著提高。
下圖為非補燃多級壓縮系統圖,可以看出,在每台壓縮機後加裝熱回收器,通過回熱系統將熱量傳遞到各級膨脹機的入口處。
當系統採用絕熱壓縮時,綜合多級壓縮和多級膨脹,組成的系統如下圖所示。
採用燃氣補熱的系統,多級壓縮階段與非補燃一致,不同的是在各級膨脹機入口加裝燃燒室,詳見下圖。
1.3 容積
壓空系統的技術痛點在於氣體的密度太低,常壓下空氣密度為1.25kg/m3,即使在10Mpa高壓下密度也只有100kg/m3左右,相比水的1000kg/m3,差了足足十倍,這意味在相同儲存質量下,空氣的罐子要比水大十倍。要解決大規模空氣存儲的方法至少有3個,方法一,就地取材,尋找廢棄的礦井,進行密封承壓方面的改造,然後將空氣壓入其中,這種方法既經濟又可靠,而且儲量驚人,比如德國的Huntorf壓空電站可儲存30萬立方的空氣,但是,這種方式受制於地形限制,靈活性差,比如我想在南京建一座壓空電站,即使金壇的溶洞再優越,我也用不上。方法二,高壓儲氣罐,該方式操作靈活,完全不受地域地形限制,比如中科院在廊坊的示範項目,採用2個直徑2.4m,長10m的儲罐,每個儲存45m3的高壓空氣,儲罐壓力10Mpa,儲罐設備屬於特種設備范疇,無論從製造,安裝還是運行,都要經過嚴格的檢查,成本相對較高。方法三,空氣液化。為了進一步減小儲罐體積,有專家想到了變態,將氣體液化,密度將增加上百倍,於是體積減少上百倍,通過設計,使膨脹機出口的空氣溫度低於78.6K(-196.5℃)時,空氣被液化,系統流程見下圖,這種系統的特點是體積小,管路復雜,效率低。我在一次講座上跟東大熱能所的肖睿教授聊天時得知,他測算過液化壓空儲能的理論效率60%,實際效率能打七折就已經很不錯了。
1.4 冷熱電三聯供
在儲能領域,壓空算是個另類,不能用傳統的評價標准衡量它,比如只追求電-電存儲效率,壓空肯定毫無優勢,非補燃機組能達到40%已算很不錯了。但它在發電的同時,還能兼顧供冷和供熱,俗稱冷熱電三聯供,其實原理沒有任何改變,只是將壓縮過程產生的熱量用於供熱,膨脹機出口的低溫空氣用於製冷,膨脹產生的有用功用於發電,詳見下圖。冷熱電三聯供的特點是能源利用效率高,若以熱能利用為基礎測算,系統效率可達70-85%。
二 系統特點
在儲能家族中,壓空和抽水蓄能屬於一個陣營,即是一種可以大功率,長時運行的物理儲能技術,各種技術對比見下圖(CAES),技術特點如下:
(1)輸出功率大(MW級),持續時間長(數小時);
(2)單位建設成本低於抽水蓄能,具有較好的經濟性;
(3)運行壽命長,可循環上萬次,壽命可達40年;
(4)環境友好,零排放。
三 系統結構
一套完整的壓空系統五大關鍵設備組成:由壓縮機、儲氣罐、回熱器、膨脹機以及發電機,結構詳圖如下。
3.1 壓縮機
壓縮機是一種提升氣體壓力的設備,見下圖。壓縮機的種類和壓縮方式各不相同,但設計者會更關心它的進出口壓力參數,表徵為四個參數,一是工作壓力區間,二是壓縮比,即進出口壓力比值,三是進出口溫度或絕熱效率,四是壓縮功率與流量。清華大學盧強院士的500kw壓空系統中所用其中一台壓縮機參數為:進氣壓力1atm,25℃,排氣壓力3.5atm,143℃,壓縮比3.5,軸功率76.7kw。
3.2 儲氣罐
儲氣罐是高壓空氣的出廠場所,說白了就是一個岩洞或者一個罐子。這里還是要強調,溫度是一種能量,60℃和20℃條件下,空氣的能量大不一樣,所以有必要對儲罐進行保溫處理,盡量維持罐內溫度一致,減小對流損失。尺寸與耐壓等級等製造問題,交給工廠。
3.3 回熱器
回熱器是熱交換器的統稱,包括預熱器,冷卻器,換熱器等等,回熱器的功能是通過溫差傳熱回收熱量,達到節能效果。
3.4 膨脹機
膨脹機的英文名字叫「turbine」,又叫透平,也有叫渦輪機的,它的功能是通過膨脹,將空氣的內能轉化為動能,推動與之相連的發電機,又將動能轉化為電能,見下圖。標定膨脹機的參數有進出口壓力與溫度,膨脹系數等。
3.5 發電機
發電機是一種發電設備,將各種形式的能量轉化成電能,此處略過。
四 壓空系統應用領域
(1)調峰與調頻。大規模壓空系統最重要的應用就是調峰和調頻,調峰的壓空電站分為兩類,獨立電站以及與電站匹配的壓空系統。
(2)可再生能源消納。壓空系統可將間斷的可再生能源儲存起來,在用電高峰期釋放,可顯著提高可再生能源的利用率。
(3)分布式能源。大電網和分布式能源系統結合是未來高效、低碳、安全利用能源的必然趨勢。由於壓空具備冷熱電聯供的優點,在分布式系統中將會有很好的應用。
五 性能評價指標
為了更清楚表達工作過程的能量傳遞,我借用了哈佛大學Azziz教授論文中的一張圖,見上圖。其中W為電功,Q為熱量,箭頭向內代表進入系統,向外表示系統輸出,流程箭頭代表空氣流向。一目瞭然,比如壓縮機工作消耗的電能來自於電網,膨脹時向電網輸出電能,都能直觀看到,並且判斷:系統用電越小越好,回收的熱量越多越好,向外輸出的電能越大越好。
在我看來,表徵系統性能的參數主要有兩個,一個是電能存儲效率,另一個是系統能量效率。電能存儲效率是電能輸出與輸入的比值,這對電網運營至關重要;系統能量效率是輸出的電能+熱能與輸入之比,表徵整個系統的總效率,這對壓空系統至關重要。
六 國內外壓空項目
6.1 德國Huntorf
Huntorf是德國1978年投入商業運行的電站,目前仍在運行中,是世界上最大容量的壓縮空氣儲能電站。機組的壓縮機功率60MW,釋能輸出功率為290MW。系統將壓縮空氣存儲在地下600m的廢棄礦洞中,礦洞總容積達3.1×105m,壓縮空氣的壓力最高可達10MPa。機組可連續充氣8h,連續發電2h。該電站在1979年至1991年期間共啟動並網5000多次,平均啟動可靠性97.6%。電站採用天然氣補燃方案,實際運行效率約為42%,扣除補燃後的實際效率為19%。
6.2 美國McIntosh
美國Alabama州的McIntosh壓縮空氣儲能電站1991年投入商業運行。儲能電站壓縮機組功率為50MW,發電功率為110MW。儲氣洞穴在地下450m,總容積為5.6×105m,壓縮空氣儲氣壓力為7.5MPa。可以實現連續41h空氣壓縮和26h發電,機組從啟動到滿負荷約需9min。該電站由Alabama州電力公司的能源控制中心進行遠距離自動控制。與Huntorf類似的是,仍然採用天然氣補燃,實際運行效率約為54%,扣除補燃後的實際效率20%。
6.3 日本上砂川盯
日本於2001年投入運行的上砂川盯壓縮空氣儲能示範項目,位於北海道空知郡,輸出功率為2MW,是日本開發400MW機組的工業試驗用中間機組。它利用廢棄的煤礦坑(約在地下450m處)作為儲氣洞穴,最大壓力為8MPa。
6.4 中國
我國對壓縮空氣儲能系統的研究開發開始比較晚,大多集中在理論和小型實驗層面,目前還沒有投入商業運行的壓縮空氣儲能電站。中科院工程熱物理研究所正在建設1.5MW先進壓縮空氣儲能示範系統,該系統為非補燃方案,理論效率41%,實際運行效率33%。
在建的項目有江蘇金壇壓縮空氣儲能電站,利用鹽穴儲氣,佔地60.5平方公里,最大容腔體積32萬㎡。
七 國內企業和機構
7.1 中科院熱物理所
中科院工程熱物理所在10MW先進壓縮空氣儲能系統研發與示範方面,已完成10MW先進壓縮空氣儲能系統和關鍵部件的設計,基本完成寬負荷壓縮機、高負荷透平膨脹機、蓄熱(冷)換熱器等關鍵部件的委託加工,正在開展關鍵部件的集成與性能測試;全面展開示範系統的集成建設,於2016年6月完成。
7.2 清華大學電機系
清華大學電極控制理論與數字化研究室,由盧強,梅生偉等帶頭,該團隊主要研究智能微電網,壓縮空氣儲能等,壓空方面的主要路線為非補燃型壓縮空氣儲能技術。
7.3 澳能(畢節)
澳能集團有限公司簡稱澳能工業,成立於2011年,是在與中國科學院工程熱物理所合作開發超臨界壓縮空氣儲能技術,利用電網負荷低谷期的余電或可再生資源發電不能並網的廢電將空氣壓縮到超臨界狀態並存儲壓縮熱,利用系統過程存儲的冷能將超臨界空氣冷卻液化存儲(儲能);在發電過程中,液態空氣加壓吸熱至超臨界狀態(同時液態空氣中的冷能被回收存儲),並進一步吸收壓縮熱後通過渦輪膨脹機驅動發電機發電(釋能)。通過系統熱能和冷能的存儲、回收,實現系統效率的提高。超臨界壓縮空氣儲能利用空氣的超臨界特性,同時解決了傳統壓縮空氣儲能依賴大型儲氣室和化石燃料的兩個技術瓶頸。
關於微控新能源
深圳微控新能源技術有限公司(簡稱微控或微控新能源)是全球物理儲能技術領航者。公司全球總部位於深圳,業務覆蓋北美、歐洲、亞洲、拉美等地區,憑借「安全、可靠、高效」的全球領先的磁懸浮能源技術,產品與服務廣泛受到華為、GE、ABB、西門子、愛默生等眾多世界500強企業的信賴。
面向未來能源「更清潔、高密度、數字化」的三大趨勢,公司持續致力於為戰略性新興產業提供能源運輸、儲存、回收、數據化管理提供系統解決方案。
③ 真空和壓縮空氣有什麼區別
壓縮空氣,就是對空氣做功 。這時,其他形式的能(如動能等)轉換為空氣的內能,空氣溫度增加,如果在空氣中放入一團硝化棉,棉花會燃燒 第二種解釋(「壓縮」作形容詞): 那就是說被壓縮的空氣。壓縮空氣用途廣泛。首先,我們在給汽車輪胎充氣時,如果壓力不夠大,便不能使輪胎充滿,汽車恐怕就無法運行的那麼的愜意了。這只是個例子。 其實,壓縮空氣在工業上用途廣泛。比如許多的機械如風動扳手(如汽車輪子所用的機械扳手),可以迅速的將螺栓擰緊或松開,因此在機械裝配上得到廣泛的應用。另外,用壓縮空氣進行清理,比如機械加工過程中,在掂塊上接上風,使工件在安放的過程中,下面不會墊屑等。還有許多的用於壓縮空氣支撐的軸承等。總之,壓縮空氣的應用在工廠中比比皆是。 在真空科學中 ,真空的含義是指在給定的空間內低於一個大氣壓力的氣體狀態。人們通常把這種稀薄的氣體狀態稱為真空狀況。這種特定的真空狀態與人類賴以生存的大氣在狀態相比較,主要有如下幾個基本特點: 真空管( 1 )真空狀態下的氣體壓力低於一個大氣壓,因此,處於地球表面上的各種真空容器中,必將受到大氣壓力的作用,其壓強差的大小由容器內外的壓差值而定。由於作用在地球表面上的一個大氣壓約為 101325N/m^2,因此當容器內壓力很小時,則容器所承受的大氣壓力可達到一個大氣壓。 ( 2 )真空狀態下由於氣體稀薄,單位體積內的氣體分子數,即氣體的分子密度小於大氣壓力的氣體分子密度。因此,分子之間、分子與其他質點(如電子、離子等)之間以及分子與各種表面(如器壁)之間相互碰撞次數相對減少,使氣體的分子自由程增大。 物理真空 本指沒有任何實物粒子存在的空間,但什麼都沒有的空間是不存在的。而假設你把一個空間的氣體都趕跑,會發現還是不時有基本粒子在真空中出現又消失,無中生有。物理上的真空實際上是一片不停波動的能量之海。當能量達到波峰,能量轉化為一對對正反基本粒子,當能量達到波谷,一對對正反基本粒子又相互湮滅,轉化為能量。 工業真空 工業上的真空指的是氣壓比一標准大氣壓小的氣體空間,是指稀薄的氣體狀態,又可分為高真空、中真空和低真空,地球以及星球中間的廣大太空就是真空。一般是用特製的抽氣機得到真空的。它的氣體稀薄程度用真空計測定,現在已能用分子抽氣機和擴散抽氣機得到0.0000000001大氣壓的高真空。真空在科學技術,電真空儀器,電子管和其他電子儀器方面,都有很大用途。 真空斷路器
④ 壓縮空氣冷卻器有什麼原理類型有哪些
DPC為你解答;壓縮空氣冷卻器,又稱空壓機冷卻器,主要分為風冷型壓縮空氣冷卻器和水冷型壓縮空氣冷卻器;壓縮空氣冷卻器的主要作用是將氣缸排出的氣體冷卻、降溫和分離壓縮氣體中的水分。
風冷型壓縮空氣冷卻器工作原理
風冷型壓縮空氣冷卻器的特點是使用空氣作為熱交換的介質進行熱量交換,熱量通過空氣帶走。當高溫的壓縮空氣進入風冷卻器芯體內的通道,壓縮空氣的熱量便迅速傳遞給導熱性能好的鋁合金芯體。空氣從風通道高速通過,強制把熱量帶走,使得壓縮空氣的溫度降低。如此不斷循環,直到系統熱平衡,使得壓縮空氣的溫度控制在允許的范圍內,風冷型壓縮空氣冷卻器置於壓縮機後。
水冷型壓縮空氣冷卻器工作原理
空壓機排出的高溫壓縮空氣從進氣口進入後冷卻器,在芯體中的換熱管流動,它與殼體內的冷卻水進行熱交換,溫度得到降低,從出氣口流出。高溫壓縮空氣在冷卻的過程中,水蒸氣及油蒸氣則冷凝成水滴與油滴析出,從排污口排出後;冷卻水則從進水口管進入殼體,與壓縮空氣進行熱交換後從出水口排出。