BufferedImageimage=newBufferedImage(w,h,BufferedImage.TYPE_INT_RGB);
image.getGraphics().drawImage(img,0,0,w,h,null);//繪制縮小後的圖
FiledestFile=newFile("C:\tmp1.jpg");
FileOutputStreamout=newFileOutputStream("C:\tmp2.jpg");//輸出到文件流
JPEGImageEncoderencoder=JPEGCodec.createJPEGEncoder(out);
encoder.encode(image);
out.close();
2. 有誰知道,JPEG壓縮編碼演算法的主要步驟
JPEG壓縮編碼演算法的主要計算步驟如下:
1.正向離散餘弦變換(FDCT)。
2.量化(quantization)。
3.Z字形編碼(zigzag scan)。
4.使用差分脈沖編碼調制(differential pulse code molation,DPCM)對直流系數(DC)進行編碼。
5.使用行程長度編碼(run-length encoding,RLE)對交流系數(AC)進行編碼。
6.熵編碼(entropy coding)。
2. 量化
量化是對經過FDCT變換後的頻率系數進行量化。量化的目的是減小非「0」系數的幅度以及增加「0」值系數的數目。量化是圖像質量下降的最主要原因。
對於有損壓縮演算法,JPEG演算法使用均勻量化器進行量化,量化步距是按照系數所在的位置和每種顏色分量的色調值來確定。因為人眼對亮度信號比對色差信號更敏感,因此使用了兩種量化表:亮度量化值和色差量化值。此外,由於人眼對低頻分量的圖像比對高頻分量的圖像更敏感,因此圖中的左上角的量化步距要比右下角的量化步距小。
3. Z字形編排
量化後的系數要重新編排,目的是為了增加連續的「0」系數的個數,就是「0」的遊程長度,方法是按照Z字形的式樣編排,如圖5-17所示。這樣就把一個8 ? 8的矩陣變成一個1 ? 64的矢量,頻率較低的系數放在矢量的頂部。
4. 直流系數的編碼
8 ? 8圖像塊經過DCT變換之後得到的DC直流系數有兩個特點,一是系數的數值比較大,二是相鄰8 ? 8圖像塊的DC系數值變化不大。根據這個特點,JPEG演算法使用了差分脈沖調制編碼(DPCM)技術,對相鄰圖像塊之間量化DC系數的差值(Delta)進行編碼,
Delta=DC(0, 0)k-DC(0, 0)k-1 ........ (5-5)
5. 交流系數的編碼
量化AC系數的特點是1 ? 64矢量中包含有許多「0」系數,並且許多「0」是連續的,因此使用非常簡單和直觀的遊程長度編碼(RLE)對它們進行編碼。
JPEG使用了1個位元組的高4位來表示連續「0」的個數,而使用它的低4位來表示編碼下一個非「0」系數所需要的位數,跟在它後面的是量化AC系數的數值。
6. 熵編碼
使用熵編碼還可以對DPCM編碼後的直流DC系數和RLE編碼後的交流AC系數作進一步的壓縮。
在JPEG有損壓縮演算法中,使用霍夫曼編碼器來減少熵。使用霍夫曼編碼器的理由是可以使用很簡單的查表(lookup table)方法進行編碼。壓縮數據符號時,霍夫曼編碼器對出現頻度比較高的符號分配比較短的代碼,而對出現頻度較低的符號分配比較長的代碼。這種可變長度的霍夫曼碼表可以事先進行定義。