『壹』 壓縮感知理論基本介紹
姓名:王鑫磊
學號:21011110262
學院:通信工程學院
【嵌牛導讀】壓縮感知是信號處理領域進入21世紀以來取得的最耀眼的成果之一,並在磁共振成像、圖像處理等領域取得了有效應用。壓縮感知理論在其復雜的數學表述背後蘊含著非常精妙的思想。基於一個有想像力的思路,輔以嚴格的數學證明,壓縮感知實現了神奇的效果,突破了信號處理領域的金科玉律——奈奎斯特采樣定律。即,在信號采樣的過程中,用很少的采樣點,實現了和全采樣一樣的效果。
【嵌牛鼻子】壓縮感知,欠采樣,稀疏恢復
【嵌牛提問】壓縮感知相比奈奎斯特采樣定律的主要突破是什麼?
【嵌牛正文】
1.CS的初步理解
CS是一個針對信號采樣的技術,是在采樣過程中完成數據壓縮的過程。我們知道在對模擬信號按一定采樣頻率進行采樣並得到數字信號的過程中,要想完整保留原始信號中的信息,采樣頻率必須大於信號中最高頻率的2倍(奈奎斯特采樣定理)。但Candes等人又提出了,如果信號在頻域是稀疏的,那麼它可以由遠低於采樣定理要求的采樣點重建恢復。Nyquist定理中的采樣為等間距采樣,若采樣頻率低必然會引起混疊,如果不等間距采樣呢?如果是隨機采樣呢?隨機采樣必然會發生頻譜泄露,但泄露會均勻分布在整個頻域且泄露值都較小,而最大的幾個峰值可以通過設置閾值檢測出來,從而有了恢復出原始信號的可能。
圖1展示了一原始的模擬信號在頻域是稀疏的,僅由三個頻率分量組成,為了得到數字信號,首先要在時域對其進行采樣,根據壓縮感知理論,可以在時域進行隨機亞采樣,之後得到的頻譜會產生如圖所示的泄露,但可以通過閾值檢測求出原始信號的真實頻率分量,從而恢復出原始信號。
2. CS的數學模型
CS有兩個前提條件:
假設:x是長度為N的原信號,稀疏度為k,它是未知的;Φ為測量矩陣,對應采樣過程,也就是壓縮的過程,如隨機采樣,是已知的;采樣後的結果為:y=Φx,也是已知的;因此壓縮感知問題是:在已知測量值y和測量矩陣Φ的基礎上,求解原信號x的過程。然而一般信號x本身並不稀疏,需要在某種稀疏基上進行稀疏表示,即x=Ψs, 其中s為稀疏向量,即為所求的稀疏信號;Ψ為稀疏基矩陣,也叫稀疏變換矩陣,如傅里葉變換。
於是最終問題表示為:
y = ΦΨs = Θs (1)
已知y,Φ,Ψ,求s, Θ稱為感知矩陣。感知矩陣需要滿足約束等距原則(RIP),因此需要測量矩陣Φ和稀疏基Ψ滿足不相關,即采樣過程與稀疏過程不相關。Candes等人又找到了獨立同分布的高斯隨機測量矩陣可以稱為普適的壓縮感知測量矩陣,於是滿足高斯分布的隨機測量矩陣就成了CS最常用的觀測矩陣。
3. CS的常用方法
已知(1)方程有無數解,因此需要通過增加約束來得到唯一解。方程是稀疏的,因此我們需要找到這個方程里所有解中最稀疏的內個就行了。
求解上述方程一般有三種思路:凸優化演算法,貪婪演算法,貝葉斯理論。CS常用演算法有:
基追蹤重構演算法 (Basis Pursuit, BP):BP演算法是一種凸優化方法。
正交匹配追蹤演算法 (OMP):OMP屬於貪婪演算法。
閾值迭代演算法 : 包括軟閾值迭代(ISTA)和迭代硬閾值(IHT)。ISTA的一種改進方法為快速閾值迭代(FISTA)。
【嵌牛參考】
[1]. Dandes, E. J. . 「Near-optimal signal recovery from random projections.」 Universal encoding strategies IEEE Transactions on Information Theory 52(2006).
[2]. Donoho, D. L. . 「Compressed sensing.」 IEEE Transactions on Information Theory 52.4(2006):1289-1306.
『貳』 有人在學壓縮感知嗎誰知道怎麼用0范數或者L1范數最小化重構原始信號或者給我文獻也行
用0范數或1范數解決cs重構歸屬一個數學問題,猶如給定你一個公式,利用這個公式或者說原理去做出很多的演算法,cs重構本歸屬與對0范數的求解問題上的。
但0范數屬於數學上一個NP_hard問題,是無法解決的,所以不能直接用求0范數的理論去做演算法,從而提出一系列基於求0范數最小的貪婪類演算法。如MP,OMP等演算法。,這類演算法中,最為基礎的算是MP演算法了。貪婪演算法的速度較快,但是重構效果相對較差,需要的測量數也較多,不能高效地壓縮信號,並且對測量矩陣的要求更高。但總的來說,應用范圍廣。
數學家同時發現,求解L1范數也可以逼近與0范數的效果,即把NP_hard問題轉化為線性規劃問題。所以現在有很多用求L1范數原理而創造了各類演算法,最典型的是BP(基追蹤)演算法和梯度投影稀疏重構演算法。這種演算法重構效果很好,但是運算量大,復雜,應用於實際上可能不大。至少得改進其演算法。
還有一大類演算法,我不關注,不說了。
具體那些演算法怎麼實現,自己去網上下程序模擬一下吧。。。。
『叄』 什麼是Dantzig selector
Dantzig selector是和OMP,BP等重構演算法類似的,用於重構稀疏信號。你是在做壓縮感知方面的么?
『肆』 誰懂利用CVX優化方面的知識,比如簡單說一下CVX的凸優化原理,或者提供一些資料,非常感謝,有用再加分
[ book-optimization.rar ] - 這是一本講解最優化的書籍,是全英文的。這是一部經典的外國教材,對最優化問題闡述的非常之精闢 [ Optimal.rar ] - 幾個 凸優化 函數,用於解決非約束和帶約束條件的凸優化問題 [ stanford_convex_optimization_book.rar ] - 國擾咐跡外的經典的有關於 凸優化 數學方面的教材,值得研緩並究有關優化方面的研究者學習 [ convex_analysis_foundation.zip ] - 凸分析基礎 中文教材。簡圓純粹這方面的資料不多(多為 凸優化 之類),中文的書籍更難找,有用該方面知識的同行多多交流。 [ ConvexOptimization.rar ] - 凸優化 問題經常出現在許多不同的領域。全面介紹了主題,這本書展示了如何解決這些問題都可以高效率地詳細數字。其重點是識別凸優化問題,然後找到解決他們最合適的技術。文本包含許多實例和作業練習,並會提出問題,如工程,計算機科學,數學,統計,金融,經濟領域的學生,研究者和實踐者。 [ cvx .zip ] - 斯坦福大學凸規劃的程序,很經典,多次在IEEE的文章中出現 [ convex_optimization.rar ] - 凸優化 程序包,包含各種凸優化演算法,可供方便調用. [ signal_decomposition_by_bp.rar ] - 基於基追蹤(basis pursuit)對信號進行稀疏表示的演算法 [ cvx .zip ] - 凸規劃建模系統,包含用戶手冊,有助於學習壓縮感知。 [ grads.rar ] - 最優化理論與演算法(第2版)這本書中的課後作業。用C 實現的一些具體演算法。
『伍』 稀疏度為1的信號,用壓縮感知恢復原始信號,匹配追蹤演算法(MP)和正交匹配追蹤演算法(OMP)的結果一樣嗎
壓縮感知(Compressed Sensing, CS)[1]理論具有全新的信號獲取和處理方式,該理論解決了傳統的Nyquist方法采樣頻率較高的問題,大大降低了稀疏信號精確重構所需的采樣頻率。
另外,CS理論在數據採集的同時完成數據壓縮,從而節約了軟、硬體資源及處理時間。
這些突出優點使其在信號處理領域有著廣闊的應用前景!