『壹』 壓縮感知的展望
非線性測量的壓縮感知。講壓縮感知解決的線性逆問題推廣到非線性函數參數的求解問題。廣義的講,非線性測量的壓縮感知,可以包括以前的測量矩陣不確定性問題,量化誤差問題,廣義線性模型問題,有損壓縮樣本問題。
壓縮感知在矩陣分解中的推廣應用。主成分分析,表示字典學習,非負矩陣分解,多維度向量估計,低秩或高秩矩陣恢復問題。
確定性測量矩陣的設計問題。 隨機矩陣在實用上存在難點。隨機矩陣滿足的RIP是充分非必要條件。在實際中,稀疏表示矩陣和隨機矩陣相乘的結果才是決定稀疏恢復性能字典。
傳統壓縮感知是以稀疏結構為先驗信息來進行信號恢復。當前最新進展顯示數據中存在的其他的簡單代數結果也作為先驗信息進行信號估計。聯合開發這些信號先驗信息,將進一步提高壓縮感知的性能。