導航:首頁 > 文件處理 > 壓縮感知圖像重建

壓縮感知圖像重建

發布時間:2022-01-11 19:14:03

㈠ 怎麼理解圖像的壓縮感知

一種常用的峰值均方誤差PMSE:

式中,A為 的最大值。實用中還常採用簡單的形式 。此時,對於8比特精度的圖像,A=255,M、N為圖像尺寸。
峰值均方誤差PMSE也被表示成等效的峰值信噪比PSNR:

㈡ 壓縮感知重構演算法的復雜度是如何分析分析的

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。
2811 SAF ESS operated 急停關作

㈢ 請問研究壓縮感知需要學哪些相關知識比如,數字信號處理數字圖像處理請明白人指點迷津!謝謝啦!

我個人覺得,數字信號處理和數字圖像處理是針對具體的應用領域做基礎知識學習。而你說的壓縮感知是一種高於具體應用領域的智能演算法,壓縮感知可以用於數字信號方面,同樣也可以應用與數字圖像處理。確切的說數字信號處理包含了數字圖像處理,只是數字圖像處理後來發展了跟多深入的知識,所以又把其獨立成一門課程。比如Mallat的《信號處理的小波導引:稀疏方法(原書第3版)》這本書上的內容,就大部分說的應用時數字圖像。
總之,數字信號處理、數字圖像處理肯定是要學的,否則你學了壓縮感知也不知道用在什麼領域,要具體學習壓縮感知方面的知識,再去看看IEEE里的一些論文還有一些博士論文。

㈣ 我的畢業設計是:基於凸優化方法的壓縮感知信號重建。 尋找相關資料及代碼,謝謝

這個方面資料很多了,主流分為l1_magic程序包和SparseLab系列程序包,信號重建僅僅應用的話還是很簡單的,去下資料看吧

㈤ 有會壓縮感知圖像處理的嗎

不好學呀,正在蛋疼中,涉及到的知識很多,而且很多演算法都是很難得,而且語言還要學,它的研究領域很廣的,和圖像有關的都可以,但是和樓上說的,實現起來很難得,就導師讓做個指紋識別,寫個論文還可以,真做出來實物不曉得多蛋疼....

㈥ 求matlab編寫基於壓縮感知的圖像去噪的程序!!

[email protected] 在學習壓縮感知圖像去噪,求這方面的程序和方法!!

㈦ 壓縮感知在無線通信信號處理中有哪些辦法

通信與信息系統專業與信號與信息處理專業區別

通信與信息系統專業

()《移通信與線技術》 研究數字移通信通信系統系統模擬、址技術、數字調制解調技術、信道態指配技術、同步技術、用戶檢測技術、語音壓縮技術、寬頻媒體技術及射頻技術研究各種數字微波通信、移通信衛星通信系統及WLAN、WMAN、ad-Roc網組、新技術及性能析並包括SDH技術述系統用編碼、調制解調、同步與信令式、址及網路安全等技術研究與發

(二)《線數據與移計算網路》 研究線數據通信廣域網、線區域網區域網線數字傳輸、媒質接入控制、線資源管理、移性管理、移媒體接入、線接入Internet、移IP、線IP、移計算網路等理論、協議、技術、實現及基於移計算網路各種應用本向研究現代移通信智能技術(智能線、智能傳輸、智能化通信協議智能網管系統等)

(三)《IP寬頻網路技術》 研究寬頻IP通信網QoS、流量工程合偵聽;VoIP組網技術、通信協議控制技術;代網路軟交換技術;SIP協議研究及應用發;B3G核網路技術;IP寬頻接入城域網關鍵設備技術發;層交換技術、IP/ATM集技術MPLS技術;IP網路管理模型技術實現;移代理及其IP通信網應用

(四)《網路與應用技術》 研究寬頻通信網結構、介面、協議、網路模擬設計技術;網路管理管理模型、介面標准、網管系統設計發;編程網路體系、軟體系統發

(五)《通信信息系統信息安全》 研究與通信信息系統信息安全關理論技術主要包括數據加密密鑰管理數字簽名與身份認證網路安全計算機安全安全協議隱形技術智能卡安全等重點線通信網信息安全根據OSI協議網路各層發研究安全解決案達信、控、用

信號與信息處理專業

()《現代通信智能信號處理技術》 本研究向現代信號處理基礎研究提高通信與信息系統效性靠性各種智能處理技術及其移通信、媒體通信、寬頻接入IP網應用目前側重於研究新代線通信網路各種先進智能信號處理技術通信信號盲離、信道盲辨識與均衡、載波調制、用戶檢測、空-聯合處理、信源-信道編碼及網路環境各種自適應技術等

(二)《量信息技術》 研究量態信息載體信息處理與傳輸技術包括量糾錯編碼、量數據壓縮、量隱形傳態、量密碼體系等關鍵技術與理論實現新代高性能計算機超高速、超容量通信信息系統具極其重要意義

(三)《線通信與信號處理技術》 本研究向研究ad hoc自組織網路、傳器網路、超寬頻(UWB)網路等新代線通信網路通信信號處理技術主要研究內容包括基於信號處理包接收盲處理技術基於粒(particle)濾波信道估計均衡技術基於信號處理媒體接入控制技術目標跟蹤與信息融合技術及網路協議體系等

(四)《現代語音處理與通信技術》 語音類進行通信交往便快捷手段各種現代通信網路智能信號處理應用起著十重要作用本研究向研究語音信號數字壓縮、識別、合增強技術基於語音智能化機介面技術面向IP網路實語音通信技術信息隱藏技術移通信語音數字處理及傳輸技術基於DSPs軟體線電通信技術及各種網路環境音頻、視頻、數據、文字媒體處理及通信技術

(五)《現代信息理論與通信信號處理》 現代信息理論基礎研究ATMIP網、移與通信、媒體通信、寬頻接入網各種信號處理技術低延、低比特率、高質量語音編碼、圖像編碼適用於第三代移通信糾錯編碼高效載波調制各種自適應處理技術等;確保實現二十世紀通信發展目標提高通信效性靠性核技術本向側重於些技術應用基礎研究

(六)《圖像處理與媒體通信》 研究媒體信息特別圖像信息處理、描述應用系統關鍵技術包括:①圖像視頻信號處理及壓縮編碼算研究應用系統設計實現;②基於IP視頻傳輸技術業務環境;③移網及cable網數據與媒體通信;④基於xDSL寬頻接入網技術;⑤圖像資料庫及影像網路技術;⑥三維圖像處理、建模、顯示析技術

(七)《信息網路與媒體技術》 進行信息網路及媒體技術應用基礎研究同利用DSP、FPGA、CPLD等軟硬體發平台著重研究發各種媒體終端包括①媒體信息壓縮編碼②信道編碼(重點糾錯編解碼)③視頻點播(VOD)與交互電視議電視、遠程教/考試/醫療④視頻驅系統⑤視音頻信號編碼壓縮算研究及ASIC設計⑥寬頻網路應用研究

源:

㈧ 什麼是「壓縮感知」(壓縮感測、compressed/compressive sensing)

壓縮感知(Compressive Sensing, or Compressed Sampling,簡稱CS),是近幾年流行起來的一個介於數學和信息科學的新方向,由Candes、Terres Tao等人提出,挑戰傳統的采樣編碼技術,即Nyquist采樣定理。
壓縮感知技術-理論
壓縮感知理論為信號採集技術帶來了革命性的突破,它採用非自適應線性投影來保持信號的原始結構,以遠低於奈奎斯特頻率對信號進行采樣,通過數值最優化問題准確重構出原始信號。
壓縮感知技術-概念特徵
壓縮感知從字面上看起來,好像是數據壓縮的意思,而實則出於完全不同的考慮。經典的數據壓縮技術,無論是音頻壓縮(例如 mp3),圖像壓縮(例如 jpeg),視頻壓縮(mpeg),還是一般的編碼壓縮(zip),都是從數據本身的特性出發,尋找並剔除數據中隱含的冗餘度,從而達到壓縮的目的。這樣的壓縮有兩個特點:第一、它是發生在數據已經被完整採集到之後;第二、它本身需要復雜的演算法來完成。相較而言,解碼過程反而一般來說在計算上比較簡單,以音頻壓縮為例,壓制一個 mp3 文件的計算量遠大於播放(即解壓縮)一個 mp3 文件的計算量。 稍加思量就會發現,這種壓縮和解壓縮的不對稱性正好同人們的需求是相反的。在大多數情況下,採集並處理數據的設備,往往是廉價、省電、計算能力較低的便攜設備,例如傻瓜相機、或者錄音筆、或者遙控監視器等等。而負責處理(即解壓縮)信息的過程卻反而往往在大型計算機上進行,它有更高的計算能力,也常常沒有便攜和省電的要求。也就是說,人們是在用廉價節能的設備來處理復雜的計算任務,而用大型高效的設備處理相對簡單的計算任務。這一矛盾在某些情況下甚至會更為尖銳,例如在野外作業或者軍事作業的場合,採集數據的設備往往曝露在自然環境之中,隨時可能失去能源供給或者甚至部分喪失性能,在這種情況下,傳統的數據採集-壓縮-傳輸-解壓縮的模式就基本上失效了。 壓縮感知的概念就是為了解決這樣的矛盾而產生的。既然採集數據之後反正要壓縮掉其中的冗餘度,而這個壓縮過程又相對來說比較困難,那麼我們為什麼不直接「採集」壓縮後的數據?這樣採集的任務要輕得多,而且還省去了壓縮的麻煩。這就是所謂的「壓縮感知」,也就是說,直接感知壓縮了的信息。
壓縮感知技術-應用影響
在大量的實際問題中,人們傾向於盡量少地採集數據,或者由於客觀條件所限不得不採集不完整的數據。如果這些數據和人們所希望重建的信息之間有某種全局性的變換關系,並且人們預先知道那些信息滿足某種稀疏性條件,就總可以試著用類似的方式從比較少的數據中還原出比較多的信號來。到今天為止,這樣的研究已經拓展地非常廣泛了。 但是同樣需要說明的是,這樣的做法在不同的應用領域里並不總能滿足上面所描述的兩個條件。有的時候,第一個條件(也就是說測量到的數據包含信號的全局信息)無法得到滿足,例如最傳統的攝影問題,每個感光元件所感知到的都只是一小塊圖像而不是什麼全局信息,這是由照相機的物理性質決定的。為了解決這個問題,美國Rice大學的一部分科學家正在試圖開發一種新的攝影裝置(被稱為「單像素照相機」),爭取用盡量少的感光元件實現盡量高解析度的攝影。有的時候,第二個條件(也就是說有數學方法保證能夠從不完整的數據中還原出信號)無法得到滿足。這種時候,實踐就走在了理論前面。人們已經可以在演算法上實現很多數據重建的過程,但是相應的理論分析卻成為了留在數學家面前的課題。 但是無論如何,壓縮感知所代表的基本思路:從盡量少的數據中提取盡量多的信息,毫無疑問是一種有著極大理論和應用前景的想法。它是傳統資訊理論的一個延伸,但是又超越了傳統的壓縮理論,成為了一門嶄新的子分支。它從誕生之日起到現在不過五年時間,其影響卻已經席捲了大半個應用科學。
復制的。。。。。

㈨ 壓縮感知的主要應用

認知無線電方向:寬頻譜感知技術是認識無線電應用中一個難點和重點。它通過快速尋找監測頻段中沒有利用的無線頻譜,從而為認知無線電用戶提供頻譜接入機會。傳統的濾波器組的寬頻檢測需要大量的射頻前端器件,並且不能靈活調整系統參數。普通的寬頻接收電路要求很高的采樣率,它給模數轉換器帶來挑戰,並且獲得的大量數據處理給數字信號處理器帶來負擔。針對寬頻譜感知的難題,將壓縮感知方法應用到寬頻譜感知中:採用一個寬頻數字電路,以較低的頻譜獲得欠采樣的隨機樣本,然後在數字信號處理器中採用稀疏信號估計演算法得到寬頻譜感知結果。
信道編碼:壓縮感測理論中關於稀疏性、隨機性和凸最優化的結論可以直接應用於設計快速誤差校正編碼, 這種編碼方式在實時傳輸過程中不受誤差的影響。在壓縮編碼過程中, 稀疏表示所需的基對於編碼器可能是未知的. 然而在壓縮感測編碼過程中, 它只在解碼和重構原信號時需要, 因此不需考慮它的結構, 所以可以用通用的編碼策略進行編碼. Haupt等通過實驗表明如果圖像是高度可壓縮的或者SNR充分大, 即使測量過程存在雜訊, 壓縮感測方法仍可以准確重構圖像。 波達方向估計:目標出現的角度在整個掃描空間來看,是極少數。波達方向估計問題在空間譜估計觀點來看是一個欠定的線性逆問題。通過對角度個數的稀疏限制,可以完成壓縮感知的波達方向估計。
波束形成:傳統的 自適應波束形成因其高解析度和抗干擾能力強等優點而被廣泛採用。但同時它的高旁瓣水平和角度失匹配敏感度高問題將大大降低接收性能。為了改進Capon 波束形成的性能,這些通過稀疏波束圖整形的方法限制波束圖中陣列增益較大的元素個數,同時鼓勵較大的陣列增益集中在波束主瓣中,從而達到降低旁瓣水平同時,提高主瓣中陣列增益水平,降低角度失匹配的影響。例如,最大主瓣旁瓣能量比,混合范數法,最小全變差。 運用壓縮感測原理, RICE大學成功研製了單像素壓縮數碼照相機。 設計原理首先是通過光路系統將成像目標投影到一個數字微鏡器件(DMD)上, 其反射光由透鏡聚焦到單個光敏二極體上, 光敏二極體兩端的電壓值即為一個測量值y, 將此投影操作重復M次, 得到測量向量 , 然後用最小全變分演算法構建的數字信號處理器重構原始圖像。數字微鏡器件由數字電壓信號控制微鏡片的機械運動以實現對入射光線的調整。 由於該相機直接獲取的是M次隨機線性測量值而不是獲取原始信號的N(M,N)個像素值, 為低像素相機拍攝高質量圖像提供了可能.。
壓縮感測技術也可以應用於雷達成像領域, 與傳統雷達成像技術相比壓縮感測雷達成像實現了兩個重要改進: 在接收端省去脈沖壓縮匹配濾波器; 同時由於避開了對原始信號的直接采樣, 降低了接收端對模數轉換器件帶寬的要求. 設計重點由傳統的設計昂貴的接收端硬體轉化為設計新穎的信號恢復演算法, 從而簡化了雷達成像系統。 生物感測中的傳統DNA晶元能平行測量多個有機體, 但是只能識別有限種類的有機體, Sheikh等人運用壓縮感測和群組檢測原理設計的壓縮感測DNA晶元克服了這個缺點。 壓縮感測DNA晶元中的每個探測點都能識別一組目標, 從而明顯減少了所需探測點數量. 此外基於生物體基因序列稀疏特性, Sheikh等人驗證了可以通過置信傳播的方法實現壓縮感測DNA晶元中的信號重構。

㈩ 壓縮感知的基本知識

現代信號處理的一個關鍵基礎是 Shannon 采樣理論:一個信號可以無失真重建所要求的離散樣本數由其帶寬決定。但是Shannon 采樣定理是一個信號重建的充分非必要條件。在過去的幾年內,壓縮感知作為一個新的采樣理論,它可以在遠小於Nyquist 采樣率的條件下獲取信號的離散樣本,保證信號的無失真重建。壓縮感知理論一經提出,就引起學術界和工業界的廣泛關注。
壓縮感知理論的核心思想主要包括兩點。第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。
壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

閱讀全文

與壓縮感知圖像重建相關的資料

熱點內容
在呀被蚊子咬完後最快的解壓法 瀏覽:983
鹿泉好的源碼出售 瀏覽:424
多ip伺服器有什麼優點 瀏覽:188
2k伺服器無法使用怎麼辦 瀏覽:909
安卓手機微信內容如何刪除 瀏覽:404
星耀巴西實況足球8解壓碼 瀏覽:165
根伺服器怎麼連接的 瀏覽:243
php是否圖片url 瀏覽:557
vps綁定域名linux 瀏覽:338
android開發一年經驗 瀏覽:523
什麼叫做解壓到根目錄下 瀏覽:503
prom文件夾 瀏覽:728
不規則土方的演算法 瀏覽:211
tor加密貨幣網站 瀏覽:451
linux轉ansi 瀏覽:738
網站源碼怎麼查 瀏覽:689
高cpu雲伺服器 瀏覽:367
androidwebrtcaecm 瀏覽:983
阿里雲部署java 瀏覽:638
雲是不是就是個大的伺服器 瀏覽:583