導航:首頁 > 程序命令 > 隨機效應的stata命令

隨機效應的stata命令

發布時間:2022-08-18 07:10:35

1. stata相關性分析有哪些

stata裡面分析相關性的命令是pwcorr a b c d e , sig,結果就有了包括了顯著性的判斷標准,stata裡面沒有星星,直接根據sig,也就是p的值來判斷是否顯著就好了。

SS是平方和,它所在列的三個數值分別為回歸誤差平方和(SSE)、殘差平方和(SSR)及總體平方和(SST),即分別為Model、Resial和Total相對應的數值。

df(degree of freedom)為自由度。

MS為SS與df的比值,與SS對應,SS是平方和,MS是均方,是指單位自由度的平方和。

coeft表明系數的,因為該因素t檢驗的P值是0.000,所以表明有很強的正效應,認為所檢驗的變數對模型是有顯著影響的。

(1)隨機效應的stata命令擴展閱讀:

Stata的統計功能很強,除了傳統的統計分析方法外,還收集了近20年發展起來的新方法,如Cox比例風險回歸,指數與Weibull回歸,多類結果與有序結果的logistic回歸,Poisson回歸,負二項回歸及廣義負二項回歸,隨機效應模型等。具體說, Stata具有如下統計分析能力:

數值變數資料的一般分析:參數估計,t檢驗,單因素和多因素的方差分析,協方差分析,交互效應模型,平衡和非平衡設計,嵌套設計,隨機效應,多個均數的兩兩比較,缺項數據的處理,方差齊性檢驗,正態性檢驗,變數變換等。

2. 請問STATA里sort,tsset的指令是什麼意思

sort指令是STATA資料庫的維護的排序指令。tsset是定義數據是一個時間序列數據。如果想對數據文件定義year為時間變數,則輸入命令:tsset year。

Stata 是一套提供其使用者數據分析、數據管理以及繪制專業圖表的完整及整合性統計軟體。它提供許許多多功能,包含線性混合模型、均衡重復反復及多項式普羅比模式。


(2)隨機效應的stata命令擴展閱讀

統計功能

Stata的統計功能很強,除了傳統的統計分析方法外,還收集了近20年發展起來的新方法,如Cox比例風險回歸,指數與Weibull回歸,多類結果與有序結果的logistic回歸,Poisson回歸,負二項回歸及廣義負二項回歸,隨機效應模型等。具體說, Stata具有如下統計分析能力:

數值變數資料的一般分析:參數估計,t檢驗,單因素和多因素的方差分析,協方差分析,交互效應模型,平衡和非平衡設計,嵌套設計,隨機效應,多個均數的兩兩比較,缺項數據的處理,方差齊性檢驗,正態性檢驗,變數變換等。

分類資料的一般分析:參數估計,列聯表分析 ( 列聯系數,確切概率 ) ,流行病學表格分析等。

等級資料的一般分析:秩變換,秩和檢驗,秩相關等

相關與回歸分析:簡單相關,偏相關,典型相關,以及多達數十種的回歸分析方法,如多元線性回歸,逐步回歸,加權回歸,穩鍵回歸,二階段回歸,百分位數 ( 中位數 ) 回歸,殘差分析、強影響點分析,曲線擬合,隨機效應的線性回歸模型等。

其他方法:質量控制,整群抽樣的設計效率,診斷試驗評價, kappa等。

3. 用stata如何確定隨機效應和固定效應哪個好,內生變數用2SLS如何做

普通的2sls回歸中的關於工具變數的命令如下:reg
y
x1
x2
(
z
x2),上述的回歸模型假定x1是內生變數,其中
z
x2分別是x1
x2
相對應的工具變數.
版主提出的帶有交叉項的回歸模型中,不知可否
採用
reg
y
x1
x2*x1
(z
z*x2)
僅供參考
,我也是初學,
私下認為,x2應該為定性變數,即啞變數.

4. 請教高手,stata做meta分析隨機效應模型的語句是什麼急求,謝謝!

加在最後面即可

5. stata命令匯總是什麼

stata命令匯總如下:

1、input: 輸入數據

例:inpurt x y

2、by: 按照某一變數的取值來進行分析

例:by group,sort: regress Y x1 x2 //按照不同的組,對Y做回歸分析

3、weight: 加權或者頻數

例:fw=頻數變數 //多用在四格表資料中或者原資料未給出所有值,只給出了值和對應的頻數

4、if: 用條件語句指定條件

例:drop if group==1|group==2 //把group變數值為1或者2的記錄刪除掉

5、in:指定觀察值的范圍,對在范圍內的觀察值做分析處理

例:replace x1="123" in 100/200 //把第100-200條記錄中的X1變數值改為123

6、for: 用來指定變數

例:for y1-y10 z1-z5: regress @x1-x22

//把y1-y10,z1-z5分別於x1-x22做回歸,一次性代表15次回歸,其中@是替換符,代表y1-y10, z1-z5

7、函數

abs(x) 絕對值

exp(x) 指數函數

log(x) 自然對數

log10(x) 常用對數

sqrt(x) 平方根

uniform(x) 生成(0,1)內均勻分布的偽隨機數

length(x) 計算長度

substr(s,n1,n2) 獲得從S的n1個字元開始的n2個字元組成的字元串

real(x) 將字元串s轉換為數值函數

trim(x) 去除字元串前面和後面的空格

int(x) 去掉x的小數部分,得到整數

sum(X) 求和

max(x) min(x) 最大值最小值

_n 當前觀察值的位置

_N 觀察值的總個數

8、ren: 重命名

例:ren var1 var123 ,把var1重新命名為var123

9、des:描述資料庫的基本情況

10、label: 為變數添加一些說明,以示說明

11、sort: 按照某一變數從小到大排序

gsort +/-:按照某一變數從大到小或者從小到大排序

sort var1 var2:按照var1大小排序,相同的var1按照var2大小排序

Stata常用功能:

1、統計功能

Stata的統計功能很強,除了傳統的統計分析方法外,還收集了近20年發展起來的新方法,如Cox比例風險回歸,指數與Weibull回歸,多類結果與有序結果的logistic回歸,Poisson回歸,負二項回歸及廣義負二項回歸,隨機效應模型等。

2、作圖功能

Stata的作圖模塊,主要提供如下八種基本圖形的製作 : 直方圖(histogram),條形圖(bar),百分條圖 (oneway),百分圓圖(pie),散點圖(two way),散點圖矩陣(matrix),星形圖(star),分位數圖。

這些圖形的巧妙應用,可以滿足絕大多數用戶的統計作圖要求。在有些非繪圖命令中,也提供了專門繪制某種圖形的功能,如在生存分析中,提供了繪制生存曲線圖,回歸分析中提供了殘差圖等。

3、程序設計

Stata是一個統計分析軟體,但它也具有很強的程序語言功能,這給用戶提供了一個廣闊的開發應用的天地,用戶可以充分發揮自己的聰明才智,熟練應用各種技巧,真正做到隨心所欲。事實上,Stata的ado文件(高級統計部分)都是用Stata自己的語言編寫的。

6. stata weakiv命令 怎麼用

一、解釋變數內生性檢驗
首先檢驗解釋變數內生性(解釋變數內生性的Hausman 檢驗:使用工具變數法的前提是存在內生解釋變數。Hausman 檢驗的原假設為:所有解釋變數均為外生變數,如果拒絕,則認為存在內生解釋變數,要用IV;反之,如果接受,則認為不存在內生解釋變數,應該使用OLS。
reg ldi lofdi
estimates store ols
xtivreg ldi (lofdi=l.lofdi ldep lexr)
estimates store iv
hausman iv ols
(在面板數據中使用工具變數,Stata提供了如下命令來執行2SLS:xtivreg depvar [varlist1] (varlist_2=varlist_iv) (選擇項可以為fe,re等,表示固定效應、隨機效應等。詳見help xtivreg)
如果存在內生解釋變數,則應該選用工具變數,工具變數個數不少於方程中內生解釋變數的個數。「恰好識別」時用2SLS。2SLS的實質是把內生解釋變數分成兩部分,即由工具變數所造成的外生的變動部分,以及與擾動項相關的其他部分;然後,把被解釋變數對中的這個外生部分進行回歸,從而滿足OLS前定變數的要求而得到一致估計量。tptqtp
二、異方差與自相關檢驗
在球型擾動項的假定下,2SLS是最有效的。但如果擾動項存在異方差或自相關,
面板異方差檢驗:
xtgls enc invs exp imp esc mrl,igls panel(het)
estimates store hetero
xtgls enc invs exp imp esc mrl,igls
estimates store homo
local df = e(N_g) - 1
lrtest hetero homo, df(`df')
面板自相關:xtserial enc invs exp imp esc mrl
則存在一種更有效的方法,即GMM。從某種意義上,GMM之於2SLS正如GLS之於OLS。好識別的情況下,GMM還原為普通的工具變數法;過度識別時傳統的矩估計法行不通,只有這時才有必要使用GMM,過度識別檢驗(Overidentification Test或J Test):estat overid
三、工具變數效果驗證
工具變數:工具變數要求與內生解釋變數相關,但又不能與被解釋變數的擾動項相關。由於這兩個要求常常是矛盾的,故在實踐上尋找合適的工具變數常常很困難,需要相當的想像力與創作性。常用滯後變數。
需要做的檢驗:
檢驗工具變數的有效性:
(1) 檢驗工具變數與解釋變數的相關性
如果工具變數z與內生解釋變數完全不相關,則無法使用工具變數法;如果與僅僅微弱地相關,。這種工具變數被稱為「弱工具變數」(weak instruments)後果就象樣本容量過小。檢驗弱工具變數的一個經驗規則是,如果在第一階段回歸中,F統計量大於10,則可不必擔心弱工具變數問題。Stata命令:estat first(顯示第一個階段回歸中的統計量)
(2) 檢驗工具變數的外生性(接受原假設好)
在恰好識別的情況下,無法檢驗工具變數是否與擾動項相關。在過度識別(工具變數個數>內生變數個數)的情況下,則可進行過度識別檢驗(Overidentification Test),檢驗原假設所有工具變數都是外生的。如果拒絕該原假設,則認為至少某個變數不是外生的,即與擾動項相關。0H
Sargan統計量,Stata命令:estat overid
四、GMM過程
在Stata輸入以下命令,就可以進行對面板數據的GMM估計。
. ssc install ivreg2 (安裝程序ivreg2 )
. ssc install ranktest (安裝另外一個在運行ivreg2 時需要用到的輔助程序ranktest)
. use "traffic.dta"(打開面板數據)
. xtset panelvar timevar (設置面板變數及時間變數)
. ivreg2 y x1 (x2=z1 z2),gmm2s (進行面板GMM估計,其中2s指的是2-step GMM)

7. stata裡面什麼命令可以對面板數據按時間求均值

首先對面板數據進行聲明:

前面是截面單元,後面是時間標識:

tsset company year

tsset instry year

產生新的變數:gennewvar=human*lnrd

產生滯後變數Genfiscal(2)=L2.fiscal

產生差分變數Genfiscal(D)=D.fiscal

一、描述性統計

xtdes :對Panel Data截面個數、時間跨度的整體描述

Xtsum:分組內、組間和樣本整體計算各個變數的基本統計量

xttab 採用列表的方式顯示某個變數的分布

二、主要命令和方法

Stata中用於估計面板模型的主要命令:xtreg

xtreg depvar [varlist] [if exp] , model_type [level(#) ]

Model type 模型

be Between-effects estimator

fe Fixed-effects estimator

re GLSRandom-effects estimator

pa GEEpopulation-averaged estimator

mle Maximum-likelihood Random-effectsestimator

主要估計方法:

xtreg: Fixed-, between- and random-effects, and population-averaged linear models

xtregar:Fixed- andrandom-effects linear models with an AR(1) disturbance

xtpcse :OLS orPrais-Winsten models with panel-corrected standard errors

xtrchh :Hildreth-Houckrandom coefficients models

xtivreg :Instrumentalvariables and two-stage least squares for panel-data models

xtabond:Arellano-Bond linear, dynamic panel data estimator

xttobit :Random-effectstobit models

xtlogit :Fixed-effects,random-effects, population-averaged logit models

xtprobit :Random-effects andpopulation-averaged probit models

xtfrontier :Stochastic frontiermodels for panel-data

xtrc gdp invest culture e sci health social admin,beta

三、xtreg命令的應用

聲明面板數據類型:

*1、面板聲明

use FDI.dtar, clear

xtset id year

1.固定效應模型估計:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,fe

2.隨機效應模型估計:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,re

3. 最大似然估計Ml:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,mle

Hausman檢驗究竟選擇固定效應模型還是隨機效應模型:

第一步:估計固定效應模型,存儲結果

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,fe

est store fe

第二步:估計隨機效應模型,存儲結果

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,re

est store re

第三步:進行hausman檢驗

hausman fe re

對於固定效應模型的異方差檢驗和序列相關檢驗:

xtserial xtreg lngdp lnfdi lnie lnex lnim lnci lngp

異方差檢驗:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,fe

xttest3 (Modified Wald statistic for groupwise heteroskedasticity in fixedeffect model)

隨機效應模型的序列相關檢驗:

xtreg xtreg lngdp lnfdi lnie lnex lnim lnci lngp,re

xttest1

xttest1用於檢驗隨機效應(單尾和雙尾) 、一階序列相關以及兩者的聯合顯著

檢驗結果表明存在隨機效應和序列相關,而且對隨機效應和序列相關的聯合檢驗也非常顯著

可以使用廣義線性模型xtgls對異方差和序列相關進行修正:

xtgls xtreg lngdp lnfdi lnie lnex lnim lnci lngp, panels(hetero),修正異方差

xtgls xtreg lngdp lnfdi lnie lnex lnim lnci lngp, panels(correlated),修正依橫截面而變化的異方差

xtgls xtreg lngdp lnfdi lnie lnex lnim lnci lngp, panels(hetero) corr(ar1),修正異方差和一階序列相關ar(1)

8. stata中estat命令啥意思

stata中estat命令它是依據上一步回歸進行在估計計算。

stata中estat數值變數資料的一般分析:參數估計,t檢驗,單因素和多因素的方差分析,協方差分析,交互效應模型,平衡和非平衡設計,嵌套設計,隨機效應,多個均數的兩兩比較,缺項數據的處理,方差齊性檢驗,正態性檢驗,變數變換等。

stata中estat統計功能:

Stata的統計功能很強,除了傳統的統計分析方法外,還收集了近20年發展起來的新方法,如Cox比例風險回歸,指數與Weibull回歸,多類結果與有序結果的logistic回歸,Poisson回歸,負二項回歸及廣義負二項回歸,隨機效應模型等。

stata中estat數值變數資料的一般分析:參數估計,t檢驗,單因素和多因素的方差分析,協方差分析,交互效應模型,平衡和非平衡設計,嵌套設計,隨機效應,多個均數的兩兩比較,缺項數據的處理,方差齊性檢驗,正態性檢驗,變數變換等。

stata中estat分類資料的一般分析:參數估計,列聯表分析 ( 列聯系數,確切概率 ) ,流行病學表格分析等。

9. 如何用stata軟體進行隨機效應模型分析

隨機效應模型輸入
xtreg y x,re

10. 在stata中怎樣對面板數據進行gmmguji

首先檢驗解釋變數內生性(解釋變數內生性的Hausman 檢驗:使用工具變數法的前提是存在內生解釋變數。Hausman 檢驗的原假設為:所有解釋變數均為外生變數,如果拒絕,則認為存在內生解釋變數,要用IV;反之,如果接受,則認為不存在內生解釋變數,應該使用OLS。
reg ldi lofdi
estimates store ols
xtivreg ldi (lofdi=l.lofdi ldep lexr)
estimates store iv
hausman iv ols
(在面板數據中使用工具變數,Stata提供了如下命令來執行2SLS:xtivreg depvar [varlist1] (varlist_2=varlist_iv) (選擇項可以為fe,re等,表示固定效應、隨機效應等。詳見help xtivreg)
如果存在內生解釋變數,則應該選用工具變數,工具變數個數不少於方程中內生解釋變數的個數。「恰好識別」時用2SLS。2SLS的實質是把內生解釋變數分成兩部分,即由工具變數所造成的外生的變動部分,以及與擾動項相關的其他部分;然後,把被解釋變數對中的這個外生部分進行回歸,從而滿足OLS前定變數的要求而得到一致估計量。tptqtp
二、異方差與自相關檢驗
在球型擾動項的假定下,2SLS是最有效的。但如果擾動項存在異方差或自相關,
面板異方差檢驗:
xtgls enc invs exp imp esc mrl,igls panel(het)
estimates store hetero
xtgls enc invs exp imp esc mrl,igls
estimates store homo
local df = e(N_g) - 1
lrtest hetero homo, df(`df')
面板自相關:xtserial enc invs exp imp esc mrl
則存在一種更有效的方法,即GMM。從某種意義上,GMM之於2SLS正如GLS之於OLS。好識別的情況下,GMM還原為普通的工具變數法;過度識別時傳統的矩估計法行不通,只有這時才有必要使用GMM,過度識別檢驗(Overidentification Test或J Test):estat overid
三、工具變數效果驗證
工具變數:工具變數要求與內生解釋變數相關,但又不能與被解釋變數的擾動項相關。由於這兩個要求常常是矛盾的,故在實踐上尋找合適的工具變數常常很困難,需要相當的想像力與創作性。常用滯後變數。
需要做的檢驗:
檢驗工具變數的有效性:
(1) 檢驗工具變數與解釋變數的相關性
如果工具變數z與內生解釋變數完全不相關,則無法使用工具變數法;如果與僅僅微弱地相關,。這種工具變數被稱為「弱工具變數」(weak instruments)後果就象樣本容量過小。檢驗弱工具變數的一個經驗規則是,如果在第一階段回歸中,F統計量大於10,則可不必擔心弱工具變數問題。Stata命令:estat first(顯示第一個階段回歸中的統計量)
(2) 檢驗工具變數的外生性(接受原假設好)
在恰好識別的情況下,無法檢驗工具變數是否與擾動項相關。在過度識別(工具變數個數>內生變數個數)的情況下,則可進行過度識別檢驗(Overidentification Test),檢驗原假設所有工具變數都是外生的。如果拒絕該原假設,則認為至少某個變數不是外生的,即與擾動項相關。0H
Sargan統計量,Stata命令:estat overid
四、GMM過程
在Stata輸入以下命令,就可以進行對面板數據的GMM估計。
. ssc install ivreg2 (安裝程序ivreg2 )
. ssc install ranktest (安裝另外一個在運行ivreg2 時需要用到的輔助程序ranktest)
. use "traffic.dta"(打開面板數據)
. xtset panelvar timevar (設置面板變數及時間變數)
. ivreg2 y x1 (x2=z1 z2),gmm2s (進行面板GMM估計,其中2s指的是2-step GMM)

閱讀全文

與隨機效應的stata命令相關的資料

熱點內容
溯源碼有分國家認證的嗎 瀏覽:210
如何通過app查詢產檢報告 瀏覽:938
拉結爾安卓手機怎麼用 瀏覽:695
驅動級進程代理源碼 瀏覽:782
androidshape畫線 瀏覽:510
程序員想辭職被拒絕 瀏覽:101
java面試邏輯 瀏覽:749
如何下載全英文app 瀏覽:724
js函數式編程指南 瀏覽:380
為什麼安卓手機相機啟動會卡 瀏覽:341
python中t是什麼意思 瀏覽:765
移動硬碟內存加密 瀏覽:407
單片機測角度 瀏覽:864
URL伺服器地址怎麼填 瀏覽:438
壓縮餅干會導致血糖高嗎 瀏覽:569
cad中xc命令怎麼用 瀏覽:424
戴爾伺服器怎麼看網卡介面 瀏覽:823
鹽鐵論pdf 瀏覽:424
最短路徑的生成演算法可用 瀏覽:457
蘋果備忘錄怎麼不能加密了 瀏覽:626