導航:首頁 > 程序命令 > 程序員加法法則

程序員加法法則

發布時間:2022-09-15 11:26:30

『壹』 C語言怎麼進行加法計算給個簡單的程序來

#include"stdio.h"
voidmain()
{
inta,b,c;
scanf("%d%d",&a,&b);
c=a+b;
printf("%d ",c);
getch();
}

『貳』 為什麼計算機也懂先算乘法除法

計算機里的加減乘除運演算法則,是程序員根據數學里的運演算法則,寫入程序,告訴計算機的,計算機才懂得先算乘法,除法的。

『叄』 程序員必備的一些數學基礎知識

作為一個標準的程序員,應該有一些基本的數學素養,尤其現在很多人在學習人工智慧相關知識,想抓住一波人工智慧的機會。很多程序員可能連這樣一些基礎的數學問題都回答不上來。

作為一個傲嬌的程序員,應該要掌握這些數學基礎知識,才更有可能碼出一個偉大的產品。

向量 向量(vector)是由一組實數組成的有序數組,同時具有大小和方向。一個n維向量a是由n個有序實數組成,表示為 a = [a1, a2, · · · , an]

矩陣

線性映射 矩陣通常表示一個n維線性空間v到m維線性空間w的一個映射f: v -> w

註:為了書寫方便, X.T ,表示向量X的轉置。 這里: X(x1,x2,...,xn).T,y(y1,y2,...ym).T ,都是列向量。分別表示v,w兩個線性空間中的兩個向量。A(m,n)是一個 m*n 的矩陣,描述了從v到w的一個線性映射。

轉置 將矩陣行列互換。

加法 如果A和B 都為m × n的矩陣,則A和B 的加也是m × n的矩陣,其每個元素是A和B相應元素相加。 [A + B]ij = aij + bij .

乘法 如A是k × m矩陣和B 是m × n矩陣,則乘積AB 是一個k × n的矩陣。

對角矩陣 對角矩陣是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。一個n × n的對角矩陣A滿足: [A]ij = 0 if i ̸= j ∀i, j ∈ {1, · · · , n}

特徵值與特徵矢量 如果一個標量λ和一個非零向量v滿足 Av = λv, 則λ和v分別稱為矩陣A的特徵值和特徵向量。

矩陣分解 一個矩陣通常可以用一些比較「簡單」的矩陣來表示,稱為矩陣分解。

奇異值分解 一個m×n的矩陣A的奇異值分解

其中U 和V 分別為m × m和n×n 的正交矩陣,Σ為m × n的對角矩陣,其對角 線上的元素稱為奇異值(singular value)。

特徵分解 一個n × n的方塊矩陣A的特徵分解(Eigendecomposition)定義為

其中Q為n × n的方塊矩陣,其每一列都為A的特徵向量,^為對角陣,其每一 個對角元素為A的特徵值。 如果A為對稱矩陣,則A可以被分解為

其中Q為正交陣。

導數 對於定義域和值域都是實數域的函數 f : R → R ,若f(x)在點x0 的某個鄰域∆x內,極限

存在,則稱函數f(x)在點x0 處可導, f'(x0) 稱為其導數,或導函數。 若函數f(x)在其定義域包含的某區間內每一個點都可導,那麼也可以說函數f(x)在這個區間內可導。連續函數不一定可導,可導函數一定連續。例如函數|x|為連續函數,但在點x = 0處不可導。

加法法則
y = f(x),z = g(x) 則

乘法法則

鏈式法則 求復合函數導數的一個法則,是在微積分中計算導數的一種常用方法。若 x ∈ R,y = g(x) ∈ R,z = f(y) ∈ R ,則

Logistic函數是一種常用的S形函數,是比利時數學家 Pierre François Verhulst在 1844-1845 年研究種群數量的增長模型時提出命名的,最初作為一種生 態學模型。 Logistic函數定義為:

當參數為 (k = 1, x0 = 0, L = 1) 時,logistic函數稱為標准logistic函數,記 為 σ(x) 。

標准logistic函數在機器學習中使用得非常廣泛,經常用來將一個實數空間的數映射到(0, 1)區間。標准 logistic 函數的導數為:

softmax函數是將多個標量映射為一個概率分布。對於 K 個標量 x1, · · · , xK , softmax 函數定義為

這樣,我們可以將 K 個變數 x1, · · · , xK 轉換為一個分布: z1, · · · , zK ,滿足

當softmax 函數的輸入為K 維向量x時,

其中,1K = [1, · · · , 1]K×1 是K 維的全1向量。其導數為

離散優化和連續優化 :根據輸入變數x的值域是否為實數域,數學優化問題可以分為離散優化問題和連續優化問題。

無約束優化和約束優化 :在連續優化問題中,根據是否有變數的約束條件,可以將優化問題分為無約束優化問題和約束優化問題。 ### 優化演算法

全局最優和局部最優

海賽矩陣

《運籌學裡面有講》,前面一篇文章計算梯度步長的時候也用到了: 梯度下降演算法

梯度的本意是一個向量(矢量),表示某一函數在該點處的方向導數沿著該方向取得最大值,即函數在該點處沿著該方向(此梯度的方向)變化最快,變化率最大(為該梯度的模)。

梯度下降法
梯度下降法(Gradient Descent Method),也叫最速下降法(Steepest Descend Method),經常用來求解無約束優化的極小值問題。

梯度下降法的過程如圖所示。曲線是等高線(水平集),即函數f為不同常數的集合構成的曲線。紅色的箭頭指向該點梯度的反方向(梯度方向與通過該點的等高線垂直)。沿著梯度下降方向,將最終到達函數f 值的局部最優解。

梯度上升法
如果我們要求解一個最大值問題,就需要向梯度正方向迭代進行搜索,逐漸接近函數的局部極大值點,這個過程則被稱為梯度上升法。

概率論主要研究大量隨機現象中的數量規律,其應用十分廣泛,幾乎遍及各個領域。

離散隨機變數

如果隨機變數X 所可能取的值為有限可列舉的,有n個有限取值 {x1, · · · , xn}, 則稱X 為離散隨機變數。要了解X 的統計規律,就必須知道它取每種可能值xi 的概率,即

稱為離散型隨機變數X 的概率分布或分布,並且滿足

常見的離散隨機概率分布有:

伯努利分布

二項分布

連續隨機變數
與離散隨機變數不同,一些隨機變數X 的取值是不可列舉的,由全部實數 或者由一部分區間組成,比如

則稱X 為連續隨機變數。

概率密度函數
連續隨機變數X 的概率分布一般用概率密度函數 p(x) 來描述。 p(x) 為可積函數,並滿足:

均勻分布 若a, b為有限數,[a, b]上的均勻分布的概率密度函數定義為

正態分布 又名高斯分布,是自然界最常見的一種分布,並且具有很多良好的性質,在很多領域都有非常重要的影響力,其概率密度函數為

其中, σ > 0,µ 和 σ 均為常數。若隨機變數X 服從一個參數為 µ 和 σ 的概率分布,簡記為

累積分布函數
對於一個隨機變數X,其累積分布函數是隨機變數X 的取值小於等於x的概率。

以連續隨機變數X 為例,累積分布函數定義為:

其中p(x)為概率密度函數,標准正態分布的累計分布函數:

隨機向量
隨機向量是指一組隨機變數構成的向量。如果 X1, X2, · · · , Xn 為n個隨機變數, 那麼稱 [X1, X2, · · · , Xn] 為一個 n 維隨機向量。一維隨機向量稱為隨機變數。隨機向量也分為離散隨機向量和連續隨機向量。 條件概率分布 對於離散隨機向量 (X, Y) ,已知X = x的條件下,隨機變數 Y = y 的條件概率為:

對於二維連續隨機向量(X, Y ),已知X = x的條件下,隨機變數Y = y 的條件概率密度函數為

期望 對於離散變數X,其概率分布為 p(x1), · · · , p(xn) ,X 的期望(expectation)或均值定義為

對於連續隨機變數X,概率密度函數為p(x),其期望定義為

方差 隨機變數X 的方差(variance)用來定義它的概率分布的離散程度,定義為

標准差 隨機變數 X 的方差也稱為它的二階矩。X 的根方差或標准差。

協方差 兩個連續隨機變數X 和Y 的協方差(covariance)用來衡量兩個隨機變數的分布之間的總體變化性,定義為

協方差經常也用來衡量兩個隨機變數之間的線性相關性。如果兩個隨機變數的協方差為0,那麼稱這兩個隨機變數是線性不相關。兩個隨機變數之間沒有線性相關性,並非表示它們之間獨立的,可能存在某種非線性的函數關系。反之,如果X 與Y 是統計獨立的,那麼它們之間的協方差一定為0。

隨機過程(stochastic process)是一組隨機變數Xt 的集合,其中t屬於一個索引(index)集合T 。索引集合T 可以定義在時間域或者空間域,但一般為時間域,以實數或正數表示。當t為實數時,隨機過程為連續隨機過程;當t為整數時,為離散隨機過程。日常生活中的很多例子包括股票的波動、語音信號、身高的變化等都可以看作是隨機過程。常見的和時間相關的隨機過程模型包括貝努力過程、隨機遊走、馬爾可夫過程等。

馬爾可夫過程 指一個隨機過程在給定現在狀態及所有過去狀態情況下,其未來狀態的條件概率分布僅依賴於當前狀態。

其中X0:t 表示變數集合X0, X1, · · · , Xt,x0:t 為在狀態空間中的狀態序列。

馬爾可夫鏈 離散時間的馬爾可夫過程也稱為馬爾可夫鏈(Markov chain)。如果一個馬爾可夫鏈的條件概率

馬爾可夫的使用可以看前面一篇寫的有意思的文章: 女朋友的心思你能猜得到嗎?——馬爾可夫鏈告訴你 隨機過程還有高斯過程,比較復雜,這里就不詳細說明了。

資訊理論(information theory)是數學、物理、統計、計算機科學等多個學科的交叉領域。資訊理論是由 Claude Shannon最早提出的,主要研究信息的量化、存儲和通信等方法。在機器學習相關領域,資訊理論也有著大量的應用。比如特徵抽取、統計推斷、自然語言處理等。

在資訊理論中,熵用來衡量一個隨機事件的不確定性。假設對一個隨機變數X(取值集合為C概率分布為 p(x), x ∈ C )進行編碼,自信息I(x)是變數X = x時的信息量或編碼長度,定義為 I(x) = − log(p(x)), 那麼隨機變數X 的平均編碼長度,即熵定義為

其中當p(x) = 0時,我們定義0log0 = 0 熵是一個隨機變數的平均編碼長度,即自信息的數學期望。熵越高,則隨機變數的信息越多;熵越低,則信息越少。如果變數X 當且僅當在x時 p(x) = 1 ,則熵為0。也就是說,對於一個確定的信息,其熵為0,信息量也為0。如果其概率分布為一個均勻分布,則熵最大。假設一個隨機變數X 有三種可能值x1, x2, x3,不同概率分布對應的熵如下:

聯合熵和條件熵 對於兩個離散隨機變數X 和Y ,假設X 取值集合為X;Y 取值集合為Y,其聯合概率分布滿足為 p(x, y) ,則X 和Y 的聯合熵(Joint Entropy)為

X 和Y 的條件熵為

互信息 互信息(mutual information)是衡量已知一個變數時,另一個變數不確定性的減少程度。兩個離散隨機變數X 和Y 的互信息定義為

交叉熵和散度 交叉熵 對應分布為p(x)的隨機變數,熵H(p)表示其最優編碼長度。交叉熵是按照概率分布q 的最優編碼對真實分布為p的信息進行編碼的長度,定義為

在給定p的情況下,如果q 和p越接近,交叉熵越小;如果q 和p越遠,交叉熵就越大。

『肆』 程序員必須掌握哪些演算法

一.基本演算法:

枚舉. (poj1753,poj2965)

貪心(poj1328,poj2109,poj2586)

遞歸和分治法.

遞推.

構造法.(poj3295)

模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)

二.圖演算法:

圖的深度優先遍歷和廣度優先遍歷.

最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓撲排序 (poj1094)

二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)

最大流的增廣路演算法(KM演算法). (poj1459,poj3436)

三.數據結構.

串 (poj1035,poj3080,poj1936)

排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)

簡單並查集的應用.

哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼樹(poj3253)



trie樹(靜態建樹、動態建樹) (poj2513)

四.簡單搜索

深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)

廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)

簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)

五.動態規劃

背包問題. (poj1837,poj1276)

型如下表的簡單DP(可參考lrj的書 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學

組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.

幾何公式.

叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)

多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)

中級(校賽壓軸及省賽中等難度):
一.基本演算法:

C++的標准模版庫的應用. (poj3096,poj3007)

較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)

二.圖演算法:

差分約束系統的建立和求解. (poj1201,poj2983)

最小費用最大流(poj2516,poj2516,poj2195)

雙連通分量(poj2942)

強連通分支及其縮點.(poj2186)

圖的割邊和割點(poj3352)

最小割模型、網路流規約(poj3308)

三.數據結構.

線段樹. (poj2528,poj2828,poj2777,poj2886,poj2750)

靜態二叉檢索樹. (poj2482,poj2352)

樹狀樹組(poj1195,poj3321)

RMQ. (poj3264,poj3368)

並查集的高級應用. (poj1703,2492)

KMP演算法. (poj1961,poj2406)

四.搜索

最優化剪枝和可行性剪枝

搜索的技巧和優化 (poj3411,poj1724)

記憶化搜索(poj3373,poj1691)

五.動態規劃

較為復雜的動態規劃(如動態規劃解特別的旅行商TSP問題等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
記錄狀態的動態規劃. (POJ3254,poj2411,poj1185)

樹型動態規劃(poj2057,poj1947,poj2486,poj3140)

六.數學

組合數學:
1.容斥原理.
2.抽屜原理.
3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026).
4.遞推關系和母函數.
數學.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率問題. (poj3071,poj3440)
3.GCD、擴展的歐幾里德(中國剩餘定理) (poj3101)
計算方法.
1.0/1分數規劃. (poj2976)
2.三分法求解單峰(單谷)的極值.
3.矩陣法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
隨機化演算法(poj3318,poj2454)
雜題(poj1870,poj3296,poj3286,poj1095)
七.計算幾何學.

坐標離散化.

掃描線演算法(例如求矩形的面積和周長並,常和線段樹或堆一起使用)
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
多邊形的內核(半平面交)(poj3130,poj3335)

幾何工具的綜合應用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)

高級(regional中等難度):
一.基本演算法要求:

代碼快速寫成,精簡但不失風格

(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)

保證正確性和高效性. poj3434

二.圖演算法:

度限制最小生成樹和第K最短路. (poj1639)

最短路,最小生成樹,二分圖,最大流問題的相關理論(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
最優比率生成樹. (poj2728)

最小樹形圖(poj3164)

次小生成樹.

無向圖、有向圖的最小環

三.數據結構.

trie圖的建立和應用. (poj2778)

LCA和RMQ問題(LCA(最近公共祖先問題) 有離線演算法(並查集+dfs) 和 在線演算法(RMQ+dfs)).(poj1330)
雙端隊列和它的應用(維護一個單調的隊列,常常在動態規劃中起到優化狀態轉移的目的). (poj2823)
左偏樹(可合並堆).

後綴樹(非常有用的數據結構,也是賽區考題的熱點).(poj3415,poj3294)
四.搜索

較麻煩的搜索題目訓練(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)

廣搜的狀態優化:利用M進制數存儲狀態、轉化為串用hash表判重、按位壓縮存儲狀態、雙向廣搜、A*演算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)

深搜的優化:盡量用位運算、一定要加剪枝、函數參數盡可能少、層數不易過大、可以考慮雙向搜索或者是輪換搜索、IDA*演算法. (poj3131,poj2870,poj2286)

五.動態規劃

需要用數據結構優化的動態規劃.(poj2754,poj3378,poj3017)
四邊形不等式理論.

較難的狀態DP(poj3133)

六.數學

組合數學.
1.MoBius反演(poj2888,poj2154)
2.偏序關系理論.
博奕論.
1.極大極小過程(poj3317,poj1085)
2.Nim問題.
七.計算幾何學.

半平面求交(poj3384,poj2540)

可視圖的建立(poj2966)

點集最小圓覆蓋.

對踵點(poj2079)

『伍』 計算機的二進制是如何計算的!

首先打開電腦的計算器,點查看選擇科學型或者程序員,之後打要算的十進制數,打完點左面或者上面選二進制,自動算好。

好吧,我知道可能不是你想要的

『陸』 演算法和軟體的關系,程序員應該學習哪些演算法

一.基本演算法:

枚舉. (poj1753,poj2965)

貪心(poj1328,poj2109,poj2586)

遞歸和分治法.

遞推.

構造法.(poj3295)

模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)

二.圖演算法:

圖的深度優先遍歷和廣度優先遍歷.

最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓撲排序 (poj1094)

二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)

最大流的增廣路演算法(KM演算法). (poj1459,poj3436)

三.數據結構.

串 (poj1035,poj3080,poj1936)

排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)

簡單並查集的應用.

哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼樹(poj3253)



trie樹(靜態建樹、動態建樹) (poj2513)

四.簡單搜索

深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)

廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)

簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)

五.動態規劃

背包問題. (poj1837,poj1276)

型如下表的簡單DP(可參考lrj的書 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學

組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.

幾何公式.

叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)

多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)

中級(校賽壓軸及省賽中等難度):
一.基本演算法:

C++的標准模版庫的應用. (poj3096,poj3007)

較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)

二.圖演算法:

差分約束系統的建立和求解. (poj1201,poj2983)

最小費用最大流(poj2516,poj2516,poj2195)

雙連通分量(poj2942)

強連通分支及其縮點.(poj2186)

圖的割邊和割點(poj3352)

最小割模型、網路流規約(poj3308)

閱讀全文

與程序員加法法則相關的資料

熱點內容
阿里雲伺服器沒有實例 瀏覽:601
綿陽有沒有什麼app 瀏覽:844
怎麼用游俠映射伺服器 瀏覽:917
為什麼無意下載的app無法刪除 瀏覽:304
word2007打開pdf 瀏覽:117
php正則class 瀏覽:736
怎麼在文件夾查找一堆文件 瀏覽:543
核酸報告用什麼app 瀏覽:791
u8怎麼ping通伺服器地址 瀏覽:994
安卓什麼手機支持背部輕敲調出健康碼 瀏覽:870
程序員抽獎排行 瀏覽:744
扭蛋人生安卓如何下載 瀏覽:724
什麼app文檔資源多好 瀏覽:924
黑馬程序員APP 瀏覽:148
掌閱小說是哪個app 瀏覽:47
如何把u盤的軟體安裝到安卓機 瀏覽:1000
php跑在什麼伺服器 瀏覽:126
編譯器怎麼跳轉到下一行 瀏覽:454
嵌入式py編譯器 瀏覽:328
rplayer下載安卓哪個文件夾 瀏覽:302