㈠ 程序員助理是做什麼的
負責輔助程序員完成相關程序的工作.
㈡ 助理程序員具體是干什麼的
初級程序員:技術員 程序員:助理工程師 高級程序員:工程師
你可以參照人事部和信息產業部聯合組織的《計算機軟體水平(資格)考試》的一些信息
負責輔助程序員完成相關程序的工作.
㈢ 學編程多久可以寫游戲輔助
學編程3周左右可以寫游戲輔助。
對於沒有任何基礎的,花上半個月學習語法,再用一周時間,熟悉一下對應Windows介面,也就是說三周左右,就可以寫一些簡單的輔助;如果寫復雜的,需要的時間更長。自學編程建議從C語言學起,可以說60%~80%的程序員都是從C語言開始。
寫一個游戲輔助需要什麼條件
1、熟練的C語言知識。
目前的外掛大部分都是用BC或者是vc寫的,擁有熟練的C語言知識是寫外掛的基本條件。
2、具有很強的匯編基礎。
一般游戲都不可能有原代碼的,必須反匯編或者跟蹤的辦法來探索其中的機理 ,所以有強的匯編基礎也是必不可少的條件。
3、熟練掌握跟蹤和調試的工具。
㈣ 程序員都有哪些黑科技
程序猿熟練掌握輔助編碼工具可以達到事半功倍的效果,大大提高工作效率Chrome
谷歌公司出品的瀏覽器,以高速著稱。開創了瀏覽器極簡主義時代,擁有強大的數據同步,豐富的插件還有完善的開發者工具。在很多細節上人性化的優化在平時使用中會讓人覺得很爽。
㈤ 現在有沒有代替程序員編程的自主軟體或者機器人
作為一名IT行業的從業者,同時早期主要的研究方向是動態軟體體系結構,所以我來回答一下這個問題。
首先,目前在軟體開發的過程以及應用的過程中,一部分代碼確實是可以自動生成的,而且這個應用的 歷史 還是比較久的,但是目前自動生成代碼的過程對於場景的依賴度還是比較高的,從應用的角度來看,主要是輔助程序員以提升開發效率。
軟體開發過程是一個邏輯思維的過程,即使是初級程序員的開發工作,從某種程度上來說,也是有一定創新要求的,而目前人工智慧依然處在初期階段,所以要想通過智能體來代替程序員的工作還是具有較大難度的。
當前在軟體開發的過程中,可以通過動態軟體體系結構的方式來完成體系結構的自適應拓展,主要的應用領域涉及到平台研發和工具研發領域。比如早期的OSGI結構就能夠在一定程度上完成軟體體系結構的動態擴展,Eclipse就是基於OSGI完成功能模塊擴展的。在動態體系結構的支撐下,可以完成部分功能代碼的自動生成。
代碼的自動生成可以分成三個部分,其一是代碼生成容器,容器要基於動態軟體體系結構來完成構建;其二是目標代碼需求描述,通常要設計一系列模版;其三是完成代碼的微調和部署。早期自動生成的代碼主要集中在展現層,原因是展現層的邏輯相對比較清晰,而且樣式也比較統一,這樣會比較容易完成目標代碼的生成。
隨著雲計算的普及,目前通過PaaS可以完成大量的資源整合,這個過程也涉及到部分代碼的自動生成。按照目前的應用趨勢來看,未來PaaS和智能體的結合將是一個比較明顯的發展趨勢,相信會在更多的場景下實現代碼的自動生成。
其實對於人工智慧的奇點觀點,從很早開始就爭論不休。一方面埃隆馬斯克、史蒂芬霍金都對超級人工智慧持恐懼態度,而另一方面大多數的學者、教授對於超級人工智慧持樂觀態度。
我想大多數人都是認為程序員是不可能被機器人所替代的,然而我並不這么認為,因為我並不覺得現在大多數的程序員做的編程工作有太大的不可替代性。
我時常看到大部分業界同僚的觀點是,編程是需要程序員的智慧才能完成系統的開發,人類的邏輯思維是機器不可取代的。我想有這種觀念的人,應該想想程序員究竟是怎麼編程的。
沒錯,未來仍然會有一些程序員存在,而那些消失了的程序員,我想是目前面向搜索引擎編程的程序員,你能夠通過搜索引擎搜索到代碼,然後復制粘貼完成編碼任務,那麼為什麼你就認為智能機器不能辦到這點呢?
如果大腦在未來,最終被研究證實只是一堆會計算的肉呢?如果到那時,量子計算機被研發出來了,編程的核心邏輯從01判斷轉向為量子計算呢?未來沒有什麼是不可能的,只是或近或遠而已。
現在難道就沒有代替程序員編程的自主軟體或者機器人么?真的沒有么?DevOps的核心思想就是研發運維一體化,只要具備自動化的可能,我想這部分工作就會有機器人來做,而不再需要程序員來做。
其實你應該了解,軟體研發的系統,除了按照強業務邏輯,一板一眼設計並且編碼的業務系統外,還有智能系統,也就是面向系統開發的系統,這種系統的特徵就是具有智能,靈活,不拘泥於固定業務實體,面向大數據,面向智能分析與推理。
程序員被徹底替代的路還很漫長,人工智慧目前來說還是非常不智能的。但從大趨勢來說,只要機器能夠代勞的,人就會偷懶不自己去做。那麼從本質上來說,取代程序員的終究是程序員自己,因為要自動化,軟體復用,並且高度抽象自動編程,等到人工智慧的奇點到來時,一切將不再受人類控制。
希望這天不會到來,或者,即使這天到來,人類也做好的應對准備。
程序員編程的過程不僅僅是簡單的用代碼實現需求,首先你要知道代碼的質量很大程度上依賴於需求的質量,很多用戶需求都一直是在變化的,同時用戶很多時候並不知道自己真正要什麼,是程序員先給一個方案給用戶去參考,再修改。有時候用戶的需求甚至是錯的。程序的開發需要程序員和需求方共同合作最後才會有最終程序完成。另外光從技術角度上來說,同樣的功能也可以有完全不同的技術實現,有時候也沒有絕對的那個技術方案一定更好。
如果真有一天機器人能完全替代程序員,那麼機器人完全可以給自己的程序優化升級實現自我進化,到這一天也沒別的人什麼事了,大家要麼都失業了,要麼像wall e里的人類一樣被圈養起來成為廢人
暫且不談有還是沒有。打個比方一個產品的研發,需要不斷的市場調研,前期的需求分析再到人員分配到技術機構等等,就應客戶的需求基本都是實時更新,三天一小換,五天一大換,甚至還有無厘頭的需求,試問機器人他可以解決嗎? 我是這樣認為的人腦遠遠大於電腦在邏輯思維及現實生活結合起來的一種創新思想,而這樣的思想機器人無法替代,畢竟機器也是人造出來的,所以沒有什麼必然的實踐。畢竟機器人沒有感情是虛擬世界的成員,沒有多維思考的能力,所以程序員不會被機器人替代,至少它們是沒有物種的存在。
現在的程序員本身都己是機器了,還需要再造寫代碼機器嗎?996,有的是24小時連上7天的都見過。不能有bug,出了bug的扣績效或開除,現在的程序員早就己經被當成機器用了
哈哈,你問這個問題前應該考慮一下甲方和產品經理,先問有沒有能代替產品經理的機器人。如果有,我覺得代替程序員不是難事。
我想過這問題,但我沒能力做
如果機器人能自己編程,那他還會滿足做個機器人嗎,還天天給你編程
不可能的,業務邏輯是最難的,編程很簡單。
框架就是自主編程軟體,業務邏輯必須是要人工處理的,將來也不可能出現能處理業務邏輯的自主編程軟體。
㈥ 小白,想入門程序員,應該從什麼開始學,順序是什麼
小白想要成為程序員,首選是選擇一門合適的語言,比如說:Python、java、C、C++、GO語言等;其次,選擇合適的學習方式,比如培訓,周末班、脫產班還是網路班。
如果完全沒有編程基礎,建議大家學習Python,Python入門簡單、語法清晰、通俗易懂,非常適合零基礎人員。
㈦ 程序員必備知識(操作系統5-文件系統)
本篇與之前的第三篇的內存管理知識點有相似的地方
對於運行的進程來說,內存就像一個紙箱子, 僅僅是一個暫存數據的地方, 而且空間有限。如果我們想要進程結束之後,數據依然能夠保存下來,就不能只保存在內存里,而是應該保存在 外部存儲 中。就像圖書館這種地方,不僅空間大,而且能夠永久保存。
我們最常用的外部存儲就是 硬碟 ,數據是以文件的形式保存在硬碟上的。為了管理這些文件,我們在規劃文件系統的時候,需要考慮到以下幾點。
第一點,文件系統要有嚴格的組織形式,使得文件能夠 以塊為單位進行存儲 。這就像圖書館里,我們會給設置一排排書架,然後再把書架分成一個個小格子,有的項目存放的資料非常多,一個格子放不下,就需要多個格子來進行存放。我們把這個區域稱為存放原始資料的 倉庫區 。
第二點,文件系統中也要有 索引區 ,用來方便查找一個文件分成的多個塊都存放在了什麼位置。這就好比,圖書館的書太多了,為了方便查找,我們需要專門設置一排書架,這裡面會寫清楚整個檔案庫有哪些資料,資料在哪個架子的哪個格子上。這樣找資料的時候就不用跑遍整個檔案庫,在這個書架上找到後,直奔目標書架就可以了。
第三點,如果文件系統中有的文件是熱點文件,近期經常被讀取和寫入,文件系統應該有 緩存層 。這就相當於圖書館裡面的熱門圖書區,這裡面的書都是暢銷書或者是常常被借還的圖書。因為借還的次數比較多,那就沒必要每次有人還了之後,還放回遙遠的貨架,我們可以專門開辟一個區域, 放置這些借還頻次高的圖書。這樣借還的效率就會提高。
第四點,文件應該用 文件夾 的形式組織起來,方便管理和查詢。這就像在圖書館裡面,你可以給這些資料分門別類,比如分成計算機類.文學類.歷史類等等。這樣你也容易管理,項目組借閱的時候只要在某個類別中去找就可以了。
在文件系統中,每個文件都有一個名字,這樣我們訪問一個文件,希望通過它的名字就可以找到。文件名就是一個普通的文本。 當然文件名會經常沖突,不同用戶取相同的名字的情況還是會經常出現的。
要想把很多的文件有序地組織起來,我們就需要把它們成為 目錄 或者文件夾。這樣,一個文件夾里可以包含文件夾,也可以包含文件,這樣就形成了一種 樹形結構 。而我們可以將不同的用戶放在不同的用戶目錄下,就可以一定程度上避免了命名的沖突問題。
第五點,linux 內核要在自己的內存裡面維護一套數據結構,來保存哪些文件被哪些進程打開和使用 。這就好比,圖書館里會有個圖書管理系統,記錄哪些書被借閱了,被誰借閱了,借閱了多久,什麼時候歸還。
文件系統是操作系統中負責管理持久數據的子系統,說簡單點,就是負責把用戶的文件存到磁碟硬體中,因為即使計算機斷電了,磁碟里的數據並不會丟失,所以可以持久化的保存文件。
文件系統的基本數據單位是 文件 ,它的目的是對磁碟上的文件進行組織管理,那組織的方式不同,就會形成不同的文件系統。
Linux最經典的一句話是:「一切皆文件」,不僅普通的文件和目錄,就連塊設備、管道、socket 等,也都是統一交給文件系統管理的。
Linux文件系統會為每個文件分配兩個數據結構: 索引節點(index node) 和 目錄項(directory entry) ,它們主要用來記錄文件的元信息和目錄層次結構。
●索引節點,也就是inode, 用來記錄文件的元信息,比如inode編號、文件大小訪問許可權、創建時間、修改時間、 數據在磁碟的位置 等等。 索引節點是文件的唯一標識 ,它們之間一一對應, 也同樣都會被 存儲在硬碟 中,所以索引節點同樣佔用磁碟空間。
●目錄項,也就是dentry, 用來記錄文件的名字、索引節點指針以及與其他目錄項的層級關聯關系。多個目錄項關聯起來,就會形成 目錄結構 ,但它與索引節點不同的是,目錄項是由內核維護的一個數據結構,不存放於磁碟,而是 緩存在內存 。
由於索引節點唯一標識一個文件,而目錄項記錄著文件的名,所以目錄項和索引節點的關系是多對一,也就是說,一個文件可以有多個別字。比如,硬鏈接的實現就是多個目錄項中的索引節點指向同一個文件。
注意,目錄也是文件,也是用索引節點唯一標識,和普通文件不同的是,普通文件在磁碟裡面保存的是文件數據,而目錄文件在磁碟裡面保存子目錄或文件。
(PS:目錄項和目錄不是一個東西!你也不是一個東西(^_=), 雖然名字很相近,但目錄是個文件。持久化存儲在磁碟,而目錄項是內核一個數據結構,緩存在內存。
如果查詢目錄頻繁從磁碟讀,效率會很低,所以內核會把已經讀過的目錄用目錄項這個數據結構緩存在內存,下次再次讀到相同的目錄時,只需從內存讀就可以,大大提高了 文件系統的效率。
目錄項這個數據結構不只是表示目錄,也是可以表示文件的。)
磁碟讀寫的最小單位是 扇區 ,扇區的大小隻有512B大小,很明顯,如果每次讀寫都以這么小為單位,那這讀寫的效率會非常低。
所以,文件系統把多個扇區組成了一個 邏輯塊 ,每次讀寫的最小單位就是邏輯塊(數據塊) , Linux中的邏輯塊大小為4KB,也就是一次性讀寫 8個扇區,這將大大提高了磁碟的讀寫的效率。
以上就是索引節點、目錄項以及文件數據的關系,下面這個圖就很好的展示了它們之間的關系:
索引節點是存儲在硬碟上的數據,那麼為了加速文件的訪問,通常會把索引節點載入到內存中。
另外,磁碟進行格式化的時候,會被分成三個存儲區域,分別是超級塊、索引節點區和數據塊區。
●超級塊,用來存儲文件系統的詳細信息,比如塊個數、塊大小、空閑塊等等。
●索引節點區,用來存儲索引節點;
●數據塊區,用來存儲文件或目錄數據;
我們不可能把超級塊和索引節點區全部載入到內存,這樣內存肯定撐不住,所以只有當需要使用的時候,才將其載入進內存,它們載入進內存的時機是不同的.
●超級塊:當文件系統掛載時進入內存;
●索引節點區:當文件被訪問時進入內存;
文件系統的種類眾多,而操作系統希望 對用戶提供一個統一的介面 ,於是在用戶層與文件系統層引入了中間層,這個中間層就稱為 虛擬文件系統(Virtual File System, VFS) 。
VFS定義了一組所有文件系統都支持的數據結構和標准介面,這樣程序員不需要了解文件系統的工作原理,只需要了解VFS提供的統一介面即可。
在Linux文件系統中,用戶空間、系統調用、虛擬機文件系統、緩存、文件系統以及存儲之間的關系如下圖:
Linux支持的文件系統也不少,根據存儲位置的不同,可以把文件系統分為三類:
●磁碟的文件系統,它是直接把數據存儲在磁碟中,比如Ext 2/3/4. XFS 等都是這類文件系統。
●內存的文件系統,這類文件系統的數據不是存儲在硬碟的,而是佔用內存空間,我們經常用到的/proc 和/sys文件系統都屬於這一類,讀寫這類文件,實際上是讀寫內核中相關的數據。
●網路的文件系統,用來訪問其他計算機主機數據的文件系統,比如NFS. SMB等等。
文件系統首先要先掛載到某個目錄才可以正常使用,比如Linux系統在啟動時,會把文件系統掛載到根目錄。
在操作系統的輔助之下,磁碟中的數據在計算機中都會呈現為易讀的形式,並且我們不需要關心數據到底是如何存放在磁碟中,存放在磁碟的哪個地方等等問題,這些全部都是由操作系統完成的。
那麼,文件數據在磁碟中究竟是怎麼樣的呢?我們來一探究竟!
磁碟中的存儲單元會被劃分為一個個的「 塊 」,也被稱為 扇區 ,扇區的大小一般都為512byte.這說明即使一塊數據不足512byte,那麼它也要佔用512byte的磁碟空間。
而幾乎所有的文件系統都會把文件分割成固定大小的塊來存儲,通常一個塊的大小為4K。如果磁碟中的扇區為512byte,而文件系統的塊大小為4K,那麼文件系統的存儲單元就為8個扇區。這也是前面提到的一個問題,文件大小和佔用空間之間有什麼區別?文件大小是文件實際的大小,而佔用空間則是因為即使它的實際大小沒有達到那麼大,但是這部分空間實際也被佔用,其他文件數據無法使用這部分的空間。所以我們 寫入1byte的數據到文本中,但是它佔用的空間也會是4K。
這里要注意在Windows下的NTFS文件系統中,如果一開始文件數據小於 1K,那麼則不會分配磁碟塊來存儲,而是存在一個文件表中。但是一旦文件數據大於1K,那麼不管以後文件的大小,都會分配以4K為單位的磁碟空間來存儲。
與內存管理一樣,為了方便對磁碟的管理,文件的邏輯地址也被分為一個個的文件塊。於是文件的邏輯地址就是(邏輯塊號,塊內地址)。用戶通過邏輯地址來操作文件,操作系統負責完成邏輯地址與物理地址的映射。
不同的文件系統為文件分配磁碟空間會有不同的方式,這些方式各自都有優缺點。
連續分配要求每個文件在磁碟上有一組連續的塊,該分配方式較為簡單。
通過上圖可以看到,文件的邏輯塊號的順序是與物理塊號相同的,這樣就可以實現隨機存取了,只要知道了第一個邏輯塊的物理地址, 那麼就可以快速訪問到其他邏輯塊的物理地址。那麼操作系統如何完成邏輯塊與物理塊之間的映射呢?實際上,文件都是存放在目錄下的,而目錄是一種有結構文件, 所以在文件目錄的記錄中會存放目錄下所有文件的信息,每一個文件或者目錄都是一個記錄。 而這些信息就包括文件的起始塊號和佔有塊號的數量。
那麼操作系統如何完成邏輯塊與物理塊之間的映射呢? (邏輯塊號, 塊內地址) -> (物理塊號, 塊內地址),只需要知道邏輯塊號對應的物理塊號即可,塊內地址不變。
用戶訪問一個文件的內容,操作系統通過文件的標識符找到目錄項FCB, 物理塊號=起始塊號+邏輯塊號。 當然,還需要檢查邏輯塊號是否合法,是否超過長度等。因為可以根據邏輯塊號直接算出物理塊號,所以連續分配支持 順序訪問和隨機訪問 。
因為讀/寫文件是需要移動磁頭的,如果訪問兩個相隔很遠的磁碟塊,移動磁頭的時間就會變長。使用連續分配來作為文件的分配方式,會使文件的磁碟塊相鄰,所以文件的讀/寫速度最快。
連續空間存放的方式雖然讀寫效率高,但是有 磁碟空間碎片 和 文件長度不易擴展 的缺陷。
如下圖,如果文件B被刪除,磁碟上就留下一塊空缺,這時,如果新來的文件小於其中的一個空缺,我們就可以將其放在相應空缺里。但如果該文件的大小大於所
有的空缺,但卻小於空缺大小之和,則雖然磁碟上有足夠的空缺,但該文件還是不能存放。當然了,我們可以通過將現有文件進行挪動來騰出空間以容納新的文件,但是這個在磁碟挪動文件是非常耗時,所以這種方式不太現實。
另外一個缺陷是文件長度擴展不方便,例如上圖中的文件A要想擴大一下,需要更多的磁碟空間,唯一的辦法就只能是挪動的方式,前面也說了,這種方式效率是非常低的。
那麼有沒有更好的方式來解決上面的問題呢?答案當然有,既然連續空間存放的方式不太行,那麼我們就改變存放的方式,使用非連續空間存放方式來解決這些缺陷。
非連續空間存放方式分為 鏈表方式 和 索引方式 。
鏈式分配採取離散分配的方式,可以為文件分配離散的磁碟塊。它有兩種分配方式:顯示鏈接和隱式鏈接。
隱式鏈接是只目錄項中只會記錄文件所佔磁碟塊中的第一塊的地址和最後一塊磁碟塊的地址, 然後通過在每一個磁碟塊中存放一個指向下一 磁碟塊的指針, 從而可以根據指針找到下一塊磁碟塊。如果需要分配新的磁碟塊,則使用最後一塊磁碟塊中的指針指向新的磁碟塊,然後修改新的磁碟塊為最後的磁碟塊。
我們來思考一個問題, 採用隱式鏈接如何將實現邏輯塊號轉換為物理塊號呢?
用戶給出需要訪問的邏輯塊號i,操作系統需要找到所需訪問文件的目錄項FCB.從目錄項中可以知道文件的起始塊號,然後將邏輯塊號0的數據讀入內存,由此知道1號邏輯塊的物理塊號,然後再讀入1號邏輯塊的數據進內存,此次類推,最終可以找到用戶所需訪問的邏輯塊號i。訪問邏輯塊號i,總共需要i+ 1次磁碟1/0操作。
得出結論: 隱式鏈接分配只能順序訪問,不支持隨機訪問,查找效率低 。
我們來思考另外一個問題,採用隱式鏈接是否方便文件拓展?
我們知道目錄項中存有結束塊號的物理地址,所以我們如果要拓展文件,只需要將新分配的磁碟塊掛載到結束塊號的後面即可,修改結束塊號的指針指向新分配的磁碟塊,然後修改目錄項。
得出結論: 隱式鏈接分配很方便文件拓展。所有空閑磁碟塊都可以被利用到,無碎片問題,存儲利用率高。
顯示鏈接是把用於鏈接各個物理塊的指針顯式地存放在一張表中,該表稱為文件分配表(FAT, File Allocation Table)。
由於查找記錄的過程是在內存中進行的,因而不僅顯著地 提高了檢索速度 ,而且 大大減少了訪問磁碟的次數 。但也正是整個表都存放在內存中的關系,它的主要的缺點是 不適 用於大磁碟 。
比如,對於200GB的磁碟和1KB大小的塊,這張表需要有2億項,每一項對應於這2億個磁碟塊中的一個塊,每項如果需要4個位元組,那這張表要佔用800MB內存,很顯然FAT方案對於大磁碟而言不太合適。
一直都在,加油!(*゜Д゜)σ凸←自爆按鈕
鏈表的方式解決了連續分配的磁碟碎片和文件動態打展的問題,但是不能有效支持直接訪問(FAT除外) ,索引的方式可以解決這個問題。
索引的實現是為每個文件創建一個 索引數據塊 ,裡面存放的 是指向文件數據塊的指針列表 ,說白了就像書的目錄一樣,要找哪個章節的內容,看目錄查就可以。
另外, 文件頭需要包含指向索引數據塊的指針 ,這樣就可以通過文件頭知道索引數據塊的位置,再通過索弓|數據塊里的索引信息找到對應的數據塊。
創建文件時,索引塊的所有指針都設為空。當首次寫入第i塊時,先從空閑空間中取得一個塊, 再將其地址寫到索引塊的第i個條目。
索引的方式優點在於:
●文件的創建、增大、縮小很方便;
●不會有碎片的問題;
●支持順序讀寫和隨機讀寫;
由於索引數據也是存放在磁碟塊的,如果文件很小,明明只需一塊就可以存放的下,但還是需要額外分配一塊來存放索引數據,所以缺陷之一就是存儲索引帶來的開銷。
如果文件很大,大到一個索引數據塊放不下索引信息,這時又要如何處理大文件的存放呢?我們可以通過組合的方式,來處理大文件的存儲。
先來看看 鏈表+索引 的組合,這種組合稱為 鏈式索引塊 ,它的實現方式是在 索引數據塊留出一個存放下一個索引數據塊的指針 ,於是當一個索引數據塊的索引信息用完了,就可以通過指針的方式,找到下一個索引數據塊的信息。那這種方式也會出現前面提到的鏈表方式的問題,萬一某個指針損壞了,後面的數據也就會無法讀取了。
還有另外一種組合方式是 索引+索引 的方式,這種組合稱為多級索引塊,實現方式是通過一個索引塊來存放多個索引數據塊,一層套一層索引, 像極了俄羅斯套娃是吧๑乛◡乛๑
前面說到的文件的存儲是針對已經被佔用的數據塊組織和管理,接下來的問題是,如果我要保存一個數據塊, 我應該放在硬碟上的哪個位置呢?難道需要將所有的塊掃描一遍,找個空的地方隨便放嗎?
那這種方式效率就太低了,所以針對磁碟的空閑空間也是要引入管理的機制,接下來介紹幾種常見的方法:
●空閑表法
●空閑鏈表法
●點陣圖法
空閑表法
空閑表法就是為所有空閑空間建立一張表,表內容包括空閑區的第一個塊號和該空閑區的塊個數,注意,這個方式是連續分配的。如下圖:
當請求分配磁碟空間時,系統依次掃描空閑表裡的內容,直到找到一個合適的空閑區域為止。當用戶撤銷一個文件時,系統回收文件空間。這時,也需順序掃描空閑表,尋找一個空閑表條目並將釋放空間的第一個物理塊號及它佔用的塊數填到這個條目中。
這種方法僅當有少量的空閑區時才有較好的效果。因為,如果存儲空間中有著大量的小的空閑區,則空閑表變得很大,這樣查詢效率會很低。另外,這種分配技術適用於建立連續文件。
空閑鏈表法
我們也可以使用鏈表的方式來管理空閑空間,每一個空閑塊里有一個指針指向下一個空閑塊,這樣也能很方便的找到空閑塊並管理起來。如下圖:
當創建文件需要一塊或幾塊時,就從鏈頭上依次取下一塊或幾塊。反之,當回收空間時,把這些空閑塊依次接到鏈頭上。
這種技術只要在主存中保存一個指針, 令它指向第一個空閑塊。其特點是簡單,但不能隨機訪問,工作效率低,因為每當在鏈上增加或移動空閑塊時需要做很多1/0操作,同時數據塊的指針消耗了一定的存儲空間。
空閑表法和空閑鏈表法都不適合用於大型文件系統,因為這會使空閑表或空閑鏈表太大。
點陣圖法
點陣圖是利用二進制的一位來表示磁碟中一個盤塊的使用情況,磁碟上所有的盤塊都有一個二進制位與之對應。
當值為0時,表示對應的盤塊空閑,值為1時,表示對應的盤塊已分配。它形式如下:
在Linux文件系統就採用了點陣圖的方式來管理空閑空間,不僅用於數據空閑塊的管理,還用於inode空閑塊的管理,因為inode也是存儲在磁碟的,自然也要有對其管理。
前面提到Linux是用點陣圖的方式管理空閑空間,用戶在創建一個新文件時, Linux 內核會通過inode的點陣圖找到空閑可用的inode,並進行分配。要存儲數據時,會通過塊的點陣圖找到空閑的塊,並分配,但仔細計算一下還是有問題的。
數據塊的點陣圖是放在磁碟塊里的,假設是放在一個塊里,一個塊4K,每位表示一個數據塊,共可以表示4 * 1024 * 8 = 2^15個空閑塊,由於1個數據塊是4K大小,那麼最大可以表示的空間為2^15 * 4 * 1024 = 2^27個byte,也就是128M。
也就是說按照上面的結構,如果採用(一個塊的點陣圖+ 一系列的塊),外加一(個塊的inode的點陣圖+一系列的inode)的結構能表示的最大空間也就128M,
這太少了,現在很多文件都比這個大。
在Linux文件系統,把這個結構稱為一個 塊組 ,那麼有N多的塊組,就能夠表示N大的文件。
最終,整個文件系統格式就是下面這個樣子。
最前面的第一個塊是引導塊,在系統啟動時用於啟用引導,接著後面就是一個一個連續的塊組了,塊組的內容如下:
● 超級塊 ,包含的是文件系統的重要信息,比如inode總個數、塊總個數、每個塊組的inode個數、每個塊組的塊個數等等。
● 塊組描述符 ,包含文件系統中各個塊組的狀態,比如塊組中空閑塊和inode的數目等,每個塊組都包含了文件系統中「所有塊組的組描述符信息」。
● 數據點陣圖和inode點陣圖 ,用於表示對應的數據塊或inode是空閑的,還是被使用中。
● inode 列表 ,包含了塊組中所有的inode, inode 用於保存文件系統中與各個文件和目錄相關的所有元數據。
● 數據塊 ,包含文件的有用數據。
你可以會發現每個塊組里有很多重復的信息,比如 超級塊和塊組描述符表,這兩個都是全局信息,而且非常的重要 ,這么做是有兩個原因:
●如果系統崩潰破壞了超級塊或塊組描述符,有關文件系統結構和內容的所有信息都會丟失。如果有冗餘的副本,該信息是可能恢復的。
●通過使文件和管理數據盡可能接近,減少了磁頭尋道和旋轉,這可以提高文件系統的性能。
不過,Ext2 的後續版本採用了稀疏技術。該做法是,超級塊和塊組描述符表不再存儲到文件系統的每個塊組中,而是只寫入到塊組0、塊組1和其他ID可以表示為3、5、7的冪的塊組中。
在前面,我們知道了一個普通文件是如何存儲的,但還有一個特殊的文件,經常用到的目錄,它是如何保存的呢?
基於Linux 一切切皆文件的設計思想,目錄其實也是個文件,你甚至可以通過vim打開它,它也有inode, inode 裡面也是指向一些塊。
和普通文件不同的是, 普通文件的塊裡面保存的是文件數據,而目錄文件的塊裡面保存的是目錄裡面一項一項的文件信息 。
在目錄文件的塊中,最簡單的保存格式就是 列表 ,就是一項一項地將目錄下的文件信息(如文件名、文件inode.文件類型等)列在表裡。
列表中每一項就代表該目錄下的文件的文件名和對應的inode,通過這個inode,就可以找到真正的文件。
通常,第一項是「則」,表示當前目錄,第二項是.,表示上一級目錄, 接下來就是一項一項的文件名和inode。
如果一個目錄有超級多的文件,我們要想在這個目錄下找文件,按照列表一項一項的找,效率就不高了。
於是,保存目錄的格式改成 哈希表 ,對文件名進行哈希計算,把哈希值保存起來,如果我們要查找一個目錄下面的文件名,可以通過名稱取哈希。如果哈希能夠匹配上,就說明這個文件的信息在相應的塊裡面。
Linux系統的ext文件系統就是採用了哈希表,來保存目錄的內容,這種方法的優點是查找非常迅速,插入和刪除也較簡單,不過需要一些預備措施來避免哈希沖突。
目錄查詢是通過在磁碟上反復搜索完成,需要不斷地進行/0操作,開銷較大。所以,為了減少/0操作,把當前使用的文件目錄緩存在內存,以後要使用該文件時只要在內存中操作,從而降低了磁碟操作次數,提高了文件系統的訪問速度。
感謝您的閱讀,希望您能攝取到知識!加油!沖沖沖!(發現光,追隨光,成為光,散發光!)我是程序員耶耶!有緣再見。<-biubiu-⊂(`ω´∩)
㈧ 現代程序員組的優點
摘要 主程序員設計、編碼、調試、安裝。輔助程序員:協助主程序員,必要時替代主程序員(平時側重於測試方案,分析測試結果)。程序管理員:全部事務性工作(提交上機程序、保存運行語言、進行軟體配置)。
㈨ 干貨!程序員需要掌握的幾種圖
隨著互聯網寒冬的的到來,程序員就業環境越來越嚴峻,這就要求我們必須要不斷提高自己,來應對高壓的工作環境。下面介紹的這幾種圖是我在工作中經常使用的,所謂的圖,都是為了輔助思考的,輔助開發的,比文字描述的更清晰,更有邏輯。
前些年,網上有一個口號喊得很響: 「人人都是產品經理」 。這就要求我們需要學習認圖、畫圖的技巧,能從需求文檔里快速的抽象出我們想要的東西。最近,網上曝出的程序員和產品經理之間的矛盾,大都是需求不清晰產生的,作為程序員的我們如果掌握的產品經理所必須的技能,那我們以後就可以吊打產品經理了,哈哈哈哈。。。
流程圖 是對過程、演算法、流程的一種圖像表示,在技術設計、交流及商業簡報等領域有廣泛的應用。
計算機語言只是一種工具。光學習語言的規則還不夠,最重要的是學會針對各種類型的問題,擬定出有效的解決方法和步驟即演算法。有了正確而有效的演算法,可以利用任何一種計算機高級語言編寫程序,使計算機進行工作。因此,設計演算法是程序設計的核心。
對同一個問題,可以有不同的解題方法和步驟。
例如,求1+2+3+…+100,可以先進行1+2,再加3,再加4,一直加到100,也可採取100+(1+99)+(2+98)+…+(49+51)+50=100+50+49×100=5050。
還可以有其它的方法。當然,方法有優劣之分。有的方法只需進行很少的步驟,而有些方法則需要較多的步驟。一般說,希望採用方法簡單,運算步驟少的方法。因此,為了有效地進行解題,不僅需要保證演算法正確,還要考慮演算法的質量,選擇合適的演算法。
一個計算問題的解決過程通常包含下面幾步:
傳統流程圖
用圖表示的演算法就是流程圖。流程圖是用一些圖框來表示各種類型的操作,在框內寫出各個步驟,然後用帶箭頭的線把它們連接起來,以表示執行的先後順序。用圖形表示演算法,直觀形象,易於理解。
美國國家標准化協會ANSI曾規定了一些常用的流程圖符號,為世界各國程序工作者普遍採用。最常用的流程圖符號見圖。
流程圖不僅可以指導編寫程序,而且可以在調試程序中用來檢查程序的正確性。如果框圖是正確的而結果不對,則按照框圖逐步檢查程序是很容易發現其錯誤的。流程圖還能作為程序說明書的一部分提供給別人,以便幫助別人理解你編寫程序的思路和結構。
PS:牆裂推薦大家使用ProcessOn,畫流程圖的神器!!!
心智圖 (Mind Map),又稱 腦圖 、 心智地圖 、 腦力激盪圖 、 思維導圖 、 靈感觸發圖 、 概念地圖 、 樹狀圖 、 樹枝圖 或 思維地圖 ,是一種圖像式思維的工具以及一種利用圖像式思考輔助工具來表達思維的工具。
心智圖是由英國的托尼·博贊(托尼·布詹)於1970年代提出的一種輔助思考工具。心智圖通過在平面上的一個主題出發畫出相關聯的對象,像一個心臟及其周邊的血管圖,故稱為「心智圖」。由於這種表現方式比單純的文本更加接近人思考時的空間性想像,所以越來越為大家用於創造性思維過程中。
ps:我一般都是用的網路腦圖,在線的比較方便
拓撲學(TOPOLOGY)是一種研究與大小、距離無關的幾何圖形特性的方法。 網路拓撲是由網路節點設備和通信介質構成的網路結構圖。
拓撲學是數學中一個重要的、基礎的分支。起初它是幾何學的一支,研究幾何圖形在連續變形下保持不變的性質(所謂連續變形,形象地說就是允許伸縮和扭曲等變形,但不許割斷和粘合) 拓撲圖用於計算機網路示意,也就是不考慮計算機實際的位置,只表示網路中每台計算機以及網路設備之間的相互關系。
節點,節點就是網路單元。網路單元是網路系統中的各種數據處理設備、數據通信控制設備和數據終端設備。
鏈路,鏈路是兩個節點間的連線。鏈路分「物理鏈路」和「邏輯鏈路」兩種,前者是指實際存在的通信連線,後者是指在邏輯上起作用的網路通路。鏈路容量是指每個鏈路在單位時間內可接納的最大信息量。
通路,通路是從發出信息的節點到接收信息的節點之間的一串節點和鏈路。
星型結構的優點是結構簡單、建網容易、控制相對簡單。其缺點是屬集中控制,主節點負載過重,可靠性低,通信線路利用率低。
匯流排結構的優點是信道利用率較高,結構簡單,價格相對便宜。缺點是同一時刻只能有兩個網路節點相互通信,網路延伸距離有限,網路容納節點數有限。在匯流排上只要有一個點出現連接問題,會影響整個網路的正常運行。目前在區域網中多採用此種結構。
環型結構的優點是一次通信信息在網中傳輸的最大傳輸延遲是固定的;每個網上節點只與其他兩個節點有物理鏈路直接互連,因此,傳輸控制機制較為簡單,實時性強。缺點是一個節點出現故障可能會終止全網運行,因此可靠性較差。
樹型結構實際上是星型結構的一種變形,它將原來用單獨鏈路直接連接的節點通過多級處理主機進行分級連接。
這種結構與星型結構相比降低了通信線路的成本,但增加了網路復雜性。網路中除最低層節點及其連線外,任一節點或連線的故障均影響其所在支路網路的正常工作。
UML是一種開放的方法,用於說明、可視化、構建和編寫一個正在開發的、面向對象的、軟體密集系統的製品的開放方法。UML展現了一系列最佳工程實踐,這些最佳實踐在對大規模,復雜系統進行建模方面,特別是在軟體架構層次已經被驗證有效。
功能模型, 從用戶的角度展示系統的功能,包括用例圖。
對象模型, 採用對象,屬性,操作,關聯等概念展示系統的結構和基礎,包括類別圖。
動態模型, 展現系統的內部行為。包括序列圖,活動圖,狀態圖。
實體關系圖,簡記E-R圖是指以實體、關系、屬性三個基本概念概括數據的基本結構,從而描述靜態數據結構的概念模式。
㈩ java程序員職責是什麼
很多對Java程序員感興趣的朋友,總是在思考一個問題,我能不能成為一名Java程序員,能不能跟做不做是兩回事。JAVA程序員廣義上是指一群以JAVA為謀生手段的軟體開發人員。狹義的說,是指擁有SUN公司JAVA認證的程序員。通常要求程序員精通java基礎,java高級編程,及常用java設計模式,並深入理解mvc編程模式,了解uml相關知識。那麼,作為一個java程序員,他們的工作職責是什麼呢?
一、 java程序員工作 職責:
1、 參與公司項目的設計、開發與維護;
2、 具有獨立完成模塊開發工作的能力;
3、 較好的溝通能力,能積極應對工作,具備較好的抗壓性;
4、 能夠快速接受並掌握新知識;敢於面對和克服困難,具有分析和解決問題的能力;
5、 做事認真負責,有責任心,有良好的團隊合作精神。
二、Java開發程序員工作職責
1、完成軟體系統代碼的實現,編寫代碼注釋和開發文檔;
2、輔助進行系統的功能定義,程序設計;
3、根據設計文檔或需求說明完成代碼編寫,調試,測試和維護;
4、分析並解決軟體開發過程中的問題;
5、協助測試工程師制定測試計劃,定位發現的問題;
6、配合項目經理完成相關任務目標。
三、Java測試程序員工作職責
1、 具備扎實的軟體測試理論基礎,熟悉測試方法,測試流程;
2、熟練編寫測試用例和執行測試用例,會使用禪道進行bug 管理, 熟練使用配置管理工具SVN;
3、 會用資料庫查詢,了解介面測試,熟悉linux;
4、熟悉資料庫Oracle基本的增刪改查以及配置監聽等;
5、 熟悉SQL,會使用fiddler、httpwatch等工具進行介面測試。