1. 學AI,達內、黑馬程序員人工智慧那個好
都還可以,現在新的學習方式,離開教室到企業內部學習了,接觸真實的機器人,這種方式以交大人工智慧中心為最,畢竟AI不同於一般的編程
2. 深圳學人工智慧,光環國際和黑馬程序員哪個好
人工智慧相對於java來說,Java前景是很不錯的,像Java這樣的專業還是一線城市比較好,師資力量跟得上、就業的薪資也是可觀的,
0基礎學習Java是沒有問題的,關鍵是找到靠譜的Java培訓機構,你可以深度了解機構的口碑情況,問問周圍知道這家機構的人,除了口碑再了解機構的以下幾方面:
1. 師資力量雄厚
2. 就業保障完善
3. 學費性價比高
一個好的Java培訓機構肯定能給你帶來1+1>2的效果,如果你在一個由專業的Java教師領導並由Java培訓機構自己提供的平台上工作,你將獲得比以往更多的投資。
希望你早日學有所成。
3. 人工智慧有可能取代程序員嗎
在我們看來,AI時代曾經遙不可及,可轉眼間各種人工智慧的產物就接連而出。被大眾所知,被我們所用。
網路的智能音箱可連接智能家居,語音控制空調、電視等家用產品,還能播新聞、聽音樂、學英語、講故事,更是一本網路大全……
自動駕駛領域目前已初步完善,駕駛等級也從L2突飛猛進到L3,從此可以邊開車邊睡覺,估計駕照不用考了,還可緩解酒駕問題……
前不久新華社推出了「全球首個AI合成女主播」,逼真的形象和流暢的播報,怎麼看都像一個真人……
種種跡象無不是在表明,越來越多的工作和事情我們可以交由AI來完成。
李開復老師曾預言:未來十年內,AI將越來越強大,市面上50%的工作都將被人工智慧所取代,而這部分人也將面臨失業的風險。那麼,未來10年,程序員是否會被AI取代呢?
在回答這個問題前,我們先來看看有哪些工作不會被AI替代?
實際上,以下三類工作完全不用擔心受AI威脅:
·創意性工作,例如醫學研究員、獲獎劇本作家、公關專家、企業家、藝術家。人工智慧不擅長提出新概念,所以創作型的工作AI是無法進行的。
·同理心/人性化工作,例如社工、教師、感情顧問。人工智慧沒有人類的情商,人們也不願「信任」機器,讓機器來處理人性化任務。
·復雜性/戰略性工作,例如首席執行官、談判專家、並購專家。需要了解多個領域並需要進行戰略決策的工作。對於人工智慧來說,即使是理解常識也很困難。
外行人經過十幾個小時的編程學習就可以用Scratch做出類似《植物大戰僵屍》的小游戲,所以編程其實並不難,難的只是創造編程工具。
編程工具需要編寫者從底層邏輯開始構想,將人類認為簡單的邏輯和指令轉換成計算機「聽得懂」的語言,這就類似於一種從0到1的開拓工作。
就像積木游戲,有些人設計積木,這類人需要考慮各個模塊之間的大小、形狀和銜接方式;有些人堆積木,這類人只需要把別人做好的東西拿過來,照著圖紙拼接在一起就行。
人工智慧的作用就好比「堆積木」,雖然它們不知道為什麼要這么做,也不會思考更好的解決方案,但計算機能夠通過大數據計算,瞬間從已知的所有方案中調出最合理的一個。
因此,隨著AI的發展,程序設計者會變得越來越稀缺,而「搬運式」程序員也必將被取代,比如:
·一直使用老舊語言,不願意學習新技術的程序員。技術語言更新不斷,由當初的低級語言,匯編語言,已經發展到當今的高級語言,如果你還是只會以前的技能,那你就會成AI替代的第一波人。
·因為很多功能都是存在的,不需要自己額外敲代碼,只需網上搜索,將自己所需的代碼復制粘貼一下,然後結合自己的項目,將代碼進行簡單修改,使其滿足自己的項目要求即可。這樣的方法雖然一開始很高效,但時間久了便只會復制粘貼,那你就很可能成AI替代的第二波人。
·將其他程序員編寫的程序進行整合與維護的代碼整理員,這波人也很容易被替代。
圖片來源於網路 侵刪
程序員的工作應該是影響世界的變化,而不是延續。未來我們會逐漸從體力勞動中解放出來,扮演為計算機決策和思考的角色。AI縱然可以取代它所應該取代的,但程序員依然是改變世界的主導者。
其實作為人工智慧工程師的程序員們,好希望看到自己的工作也被人工智慧所取代,這一天道阻且長!
4. 人工智慧會不會取代程序員的工作
對於我來說,我認為人工智慧並不能取代程序員的工作,因為智能化的東西也是需要程序員去輸入程序,這樣才會達到一定的效果。畢竟智能化的東西始終會有壞掉的那一天,那麼在那個時候就需要人工去重新安裝,這樣也可以體現出程序員的工作重要性。
5. 作為一名程序員,應該如何看待AI
程序員以及其他類型的IT工作無疑是當前最熱門的工作。然而,這種趨勢可能不會一直持續下去。人工智慧的發展可能會打破這一格局。
美國橡樹嶺國家實驗室的一些專家預測,到2040年,AI技術將會強大到足以替代程序員,AI編寫軟體將比人類程序員更好、更快。換句話說,軟體編寫的軟體比人類編寫的更好。
但不會完全替代。在不久的將來,AI和人類程序員將在編程中扮演互補的角色。AI的工作可能是處理重復性的、耗時的任務,這些任務需要機器優異的精確性。機器可以避免由於人為因素而產生的語法錯誤或設計錯誤。例如,AI可以提供幫助的一種方式是自動完成功能,程序員只編寫一小部分代碼,然後AI識別程序員的意圖,並完成剩下的代碼,從而為人類節省大量的工作。
希望可以幫到你,謝謝!
6. 計算機科學與技術、人工智慧和大數據哪個專業好(對女生來說)
計算機科學與技術,人工智慧和大數據哪一個專業適合女生?
說實話,只要是數學,物理好的,這幾個專業都適合女生就業《 關鍵問題是,就業環境中,存在的女性就業歧視 》
這幾個專業屬於熱門專業,除了計算機科學與技術相對成熟外, 人工智慧和大數據 是新興專業,並不是太成熟,還是在摸索階段,需要解決的問題還不少。
從女性就業上看,這幾個專業從理論上對女性不太有好,至少是工作強度上,我們在人工智慧方面占據絕對的位置,但是我們不否認我們的有利是靠 996完成的, 高強度的工作時間,確實不適合,不值得女性去拼搏,《 特別是女性到了婚姻階段,企業往往會找一些沒有道理的道理,來解決女性工作問題 》
當然我們也不能一概而論,在這些專業中女性期待成績的也不佔少數,只要你能適應高強度的工作壓力,應該比男性更容易取得成績。
其實在計算機科學技術專業中,適合女性的是網路安全。
這三個都是非常熱門的專業,根據2019年教育部公布的數據——在新增備案專業中新增最多的就是「數據科學與大數據技術」,全國共有196所高校爭相開設。其次是人工智慧類專業:機器人工程、智能科學與技術、智能製造工程。新增最多的審批專業是「人工智慧」專業,全國共有35所985大學獲得審批「人工智慧」專業首批建設資格。
計算機科學技術是工科之母
計算機科學與基礎是一門研究計算機的專業。專業涉及面非常的廣,涉及到了計算機軟體,硬體,資料庫,操作系統,軟體工程等。如果將來打算考研往人工智慧大數據方向發展,我們建議在本科的時候,可以學計算機科學技術。
大數據與人工智慧是交叉學科人工智慧專業可以理解為先要機器學習人類的語言、行為,再進行模仿為人類進行服務。目前開設的高校並不是很多,多為985工程重點院校,專業橫跨計算機、自動化、心理學、數學等學科。
大數據專業是計算機科學與技術跟數學、統計學的交叉學科,專業也會涉及到人工智慧的相關課程。要求對於資料庫,程序設計,計算機網路有足夠了解,同時對於數學的要求極高。
女生選擇興趣更重要目前在這些專業裡面男女比例是比較失衡的,甚至有的專業會出現「和尚班」,沒有一個女生。如果女生從小對於計算機電子信息這一塊比較感興趣,那麼選擇了相關專業之後,將來就業的時候也會有一定的優勢。從團隊建設的角度來講在一些知名企業裡面也願意招收一些女生。
從三個專業來看,個人會推薦女生往大數據方向學習。但是大數據專業對於計算機和數學的要求非常高。本科階段,能夠把基礎學科學的扎實,這是最為重要的。考研就是對於職業生涯方向進行再一次的調整,熱門方向相應的門檻也會比較高一些。
專注教育問答,歡迎關注張老師生涯課堂,分享幫助更多人
中國女性,有韌性,勤勞,聰明,善良,美麗,是世界上最偉大的女性,沒有之一!三個方向都適合中國女性,尤其是喜歡數學的中國女性!計算機最後發展的瓶頸在於數學!計算機科學與技術是基礎需要學習計算機原理,操作系統,數據結構,編程等!有了這個好的基礎,可以搞機器學習,深度學習,神經網路等,這是人工智慧的領域,人工智慧演算法需要大數據的訓練,才能形成相對穩定的預測模型!由此可見先學計算機科學與技術,其次是大數據,其次是人工智慧!當然可以只學計算機科學與技術,或者學前兩個,或者三個都學!我期待中國涌現出大量的計算機科學科學家!
人工智慧雖火,但眾多相關專業的研究人員都轉向人工智慧,競爭必激烈,從易就業易高薪的角度,人工智慧不是最佳選擇,再說你是女生,人工智慧更不適合,是因為工作強度的問題,建議搞計算機,將來做測試方向,相對輕松,薪水也不低
都可以,跟著你的心走就好了。
我簡單跟你說一下這兩者的不同吧。
1.計算機科學與技術 就是傳統的大學科,什麼都學,軟體、硬體、網路三個大方向,計算機組成原理,操作系統,代碼重構,C語言,C++,Java都是有的,不知道現在有沒有Python。
學這個可以系統性地了解一下計算機的東西,搞軟體也未必就接觸不到其他方向的東西了,起碼網路協議有時候還是非常重要的,搞大數據,那資料庫總得非常熟悉吧。
這個專業的好處就是全面,側重點在哪,主要想學什麼,自己定。
2.數據科學與大數據技術 是近些年新開的學科,主要學習內容是數學,統計,軟體三個方面的東西。除了計算機相關,還得學很多數學課程,統計的一些東西。
搞大數據其實也分好多場景和類別的,像是大數據開發工程師,那是妥妥的程序員,需要先學Java打好底子,然後學Hadoop搞大數據。還有些數據科學家是搞科研的,還有各種數據分析師,就是類似金融和各行各業的做分析的那些人才了,雖然也可能會用到編程的知識,但不一定是重點,也不一定都會學到什麼程度。怕是自己要多用點心,多努努力了。
3.人工智慧同理,女生與男生也同理。在編程這塊區別不大,不拼體力,主要看思維。
至於選擇哪個么,就看你是想系統性地學習一下計算機,打好基礎,還是想直接學大數據對口的相關東西了。或者人工智慧。
選計算機科學 就好好打基礎,自己分析查看以後做大數據開發需要用到的東西,把課程體系裡沒有的東西自己找資料來補上,自學,或者參加培訓,找人教,帶著做項目。
選大數據科學 就看看大數據都講什麼,自己想往哪個方向發展,看看企業,目標單位都要什麼技術。搞科研就多弄數學,編程就補計算機,統計就好好弄統計。想學好都是得自己下功夫的。
人工智慧也是同理。
不過211的學生嘛,挺優秀的了,自學能力OK的。知道怎麼做了,剩下的就去做就好了。
順便給你貼一下大數據的學習路徑吧,可能用得到。
如果需要學習線路圖或隨堂筆記的話,評論區給我回復111,找我就好了。
建議人工智慧,現在人工智慧人才十分稀缺,學這以後就業方便,收入高,而且要花的精力不會比另外兩個方向多很多
看樣子你是走不了研究路線的,建議計算機專業,做做產品設計、前端開發、項目測試及管理。人工智慧和大數據專業,不讀研讀博,不讀名校,打造不出核心競爭能力。
7. 有人說,人工智慧將來可替代程序員寫代碼,你怎麼看
你好!我是康哥! 未來不光是人工智慧會取代程序員寫代碼,我認為很多行業都有可能被取代!
作為80後的我小時候沒有電腦,父母那一輩基本上班的時候也都沒接觸過電腦,那個時候工作文稿都是用手寫,而到我上了大學,短短18年的時間電腦在中國得到了普及。讓我印象最深的是我參加工作的時候公司的老會計,業務能力不在話下,但是金蝶用友玩的不轉。後來也不得不順應時代的發展,學習電腦知識。
所以人工智慧現在看似是一個很新興的產業,但是很可能在未來的十幾年當中滲入我們生活中的方方面面。
那些重復性的工作,例如人力資源中的考勤工資;財務中的基礎做賬工作;程序員中的基礎代碼工作;甚至醫院的醫生都會被人工智慧取代 。
未來不會被渠道的是一些重復性工作不強的職位,我認為這個實際上就是效率的提升,電腦代替手工勞動,機器代替人的大腦和手腳,讓我們的生活更加有效率。
我認為是一件好事情,能讓我們有更多的時間去開發新事物。不斷地開發我們的大腦去 探索 新事物。
但是從另外一個方面來看,未來的確有很多人會失業。不管是現在我們常見的一些崗位,包括一些看似穩定的鐵飯碗,例如公務員或者事業單位人員,一些職能性的但是效率底下的職位也將會被取代。
這就提醒我們每個人都要居安思危,不斷提升自己的技能和附加值,這樣才不會被 社會 所淘汰,二十年時間看似很長,但是實際很短。
AI能代替我們的是一些能夠重復的工作和簡單的開發工作,可是誰來維護這些人工智慧,如何管理這些人工智慧我認為未來是我們人類職位的一個新增項。
作為一名IT行業的從業者,同時也是一名計算機專業的教育工作者,我來回答一下這個問題。
首先,隨著人工智慧技術的不斷發展,未來大量基礎的編碼工作必然會由智能體來完成,這個過程也會不斷推動程序員的崗位升級,提升程序員的崗位附加值,同時減輕程序員的工作壓力。實際上,人工智慧技術的發展對於未來延長程序員的職業生命周期具有重要的意義。
當前程序員崗位的工作壓力還是比較大的,不僅應用級程序員每天需要完成大量的編碼工作,研發級程序員也需要面對一些毫無能力提升的編碼工作,這在很大程度上降低了程序開發的樂趣,使得程序員感到乏味。隨著當前產品迭代的速度不斷加快(大數據時代的並行迭代),程序員不僅面臨更大的工作量,在工作內容上也得到了一定的拓展(全棧開發趨勢),所以當前從事程序員崗位還是具有一定難度的。
要想讓程序員從當前的工作壓力當中解放出來,採用智能體實現代碼編寫是非常重要的一個解決方案,這不僅會提升程序開發的效率,同時也會保障程序代碼的質量一致性,提升程序的穩定性。實際上,當前在程序開發領域內已經有不少工具可以完成一部分代碼的生成工作,雖然目前功能還不夠強大,但是已經在一定程度上減輕了程序員的編碼負擔。
未來當智能體替代程序員完成基本的編碼工作之後,程序員可以把更多的精力應用在創新方面(演算法設計、模式設計、框架設計等),而且技術驗證的速度也會明顯提升,這些都會提升程序員的工作效率。
如果有互聯網、大數據、人工智慧等方面的問題,或者是考研方面的問題,都可以在評論區留言,或者私信我!
有人說,人工智慧將來可替代程序猿寫代碼,你怎麼看?
好!
科技 這么發達,
完全有可能,
但是,
怎麼發達,
有一些程序還是離不開人的操作,
程序猿,
有些程序必須靠人工才能完,
這個毋庸置疑,
不論智能怎麼發達,
有些人的操作,
永遠取代不了的,
這個倒是真的,
有一些事物,
是人工智慧無法完成的,
到任何時候人,
都不會被智能取代消退,
總有一些程序交給人,
來操作!
都是些不深入ai的媒體炒作概念,讓人覺得ai無所不能。一百二十八年內不可能,有的話也是小打小鬧,滿足不了工業屆千變萬化的需求。ai可以輔助創作,但獨立創作,尤其是代碼,絕無可能。
如果ai將來能寫可執行的邏輯正確的代碼,那麼未來的程序員或演算法工程師,都會大部分失業。如果ai都能按邏輯寫代碼,都可以去嘗試各種邏輯,甚至自己決策。那麼ai可以控制各種帶有晶元的設備,小到手機,大到 汽車 。這還是ai么,這不是上帝之子么。
可能你從github喂海量的代碼給到模型,藉助於大數據和gpu算力出來,理論上來說能訓練出一個號稱能寫代碼的ai.但這個ai寫出的代碼都是基於統計規律的,不能處理突發事故。運氣好的話,生成的代碼能執行,但代碼越長,生成的代碼可運行的概率越低。
即使能運行,代碼的邏輯是什麼?
程序員和產品經理干架,就是因為需求會一直變。你期望ai能寫出滿足千變萬化的需求的代碼?
我們從幾十億年的單細胞生物進化到今天,能不能有點自信?要是ai這么厲害,我覺得我沒臉說我是人了。總之,怎麼可能!
將來我們寫代碼時:
總之,ai可以輔助程序員編程,極大提高編程效率。但如果代替程序員自己編程,根本不可能。如果有那一天,我把我現在的手機吃了。
這幾年,人工智慧被炒的越來越熱了,比如阿里的魯班系統能夠自動生成雙十一海報,一天可能出圖上億張;還有通過機器學習,程序畫的話,被賣到上億元;其實就目前來講,這些都是比較基礎的,人工智慧即使畫畫,也是通過機器學習別人的畫之後,說白了, 組合的。沒有靈魂作為支撐的產品,不能說沒有價值,但是在意義層面來講絕對是非常弱的。
人工智慧在將來可以替代程序員寫代碼嗎?我只能說:有可能,而且即使人工智慧代替程序員寫代碼,也是比較基礎的,其實,隨著現在程序工具化的趨勢,已經解放了程序員,如果人工智慧+工具化,在一些基礎的,機械的編程中,確實能夠讓程序員解放出來,去處理更加復雜的業務邏輯和架構設計。
但是,我感覺人工智慧完全取代程序員是不可能的。因為,機器永遠也不想到人類復雜的需求,尤其是,變來變去的需求變化。如果機器能夠有靈魂的話,估計也會被人類復雜且變來變去的需求,折磨的要死,從而發出一句,感嘆:卧槽,這是什麼玩意的破需求。
但是,去年有一條新聞值得我們關注,那就是:
Repairnator 是由 KTH 瑞典皇家理工學院的軟體技術教授 Martin Monperrus 開發。它會監控開源軟體在持續集成期間發現的 bug,並嘗試自動修復它們。如果它成功合成了一個有效的補丁,那麼 Repairnator 會偽裝成人類身份向人類開發者提交此補丁。到目前為止,Repairnator 已經成功生成了 5 個補丁,並被人類開發者永久地合並到代碼庫中。
這是自動程序修復軟體工程研究中新的里程碑。
所以,現在機器都可以修改 bug 了,將來在一定程度上寫程序,也是有可能的,但是完全取代我認為不現實。
原因如下:
當然了,如果機器能夠完全取代人類編程的話,那非常可怕啊,未來有可能將是被機器控制的時代,而不是人類控制機器的時代。
有人說,人工智慧將來可以取代程序員來寫代碼,這個理由不成立,因為人工智慧就是程序員開發出來的。而且現在所謂的人工智慧遠遠沒有達到真正意義上的智能,大部分還是人工更多一點。
如果以人類的生命成長階段來看,人工智慧目前只能算是嬰兒階段,在嬰兒階段就拋棄喂養自己的母親程序員,那為時也太早了。
人工智慧大體分兩個大的方向,圖像識別和機器學習。目前圖像識別成長的比機器學習更快一點,但也僅限於快一點兒,我們常見的圖像識別場景就是無人駕駛。而機器學習發展相對緩慢,都是在初級階段,如果想要有階段性的變化,在演算法機制上要有突破性的進步,才能引領機器學習進入下一階段。
所以至少在未來幾十年甚至上百年我認為我們程序員都不會失業的,還是有飯吃的。
所謂人工智慧的程序也是由人類開發設定的,它也絕不會取代人的作用,它對美學,結構想像力設計,邏輯多向思維甚至懸思學都無法深入涉足,它就像一個架構師將演算法和公式公布出來,其它基礎部分由代碼來完成一樣,就算將來人工智慧也可以進行相關研發,但審核與檢測仍然需要人類完成,人類的工作只會越來越高級。
所以不用杞人憂天,人工智慧是不可能真正成為人類的思維一部分的,當它的工作目標對人類無意義而虛耗電能和時間的時候,人類是一定會及早發現並介入的,一個簡單的拔電源就可以停止其行為……
人工智慧是近階段大家經常提到的一個話題,其中神經網路深度學習其中一個特點,那麼人工智慧最終真的能達到一般人類這樣去思維么?能夠像程序員那樣的編程么?會不會以後有一天真的能替代程序員了吧,這件事情你是怎麼看待的?針對這事情我來說一下我的看法。
人工智慧會讓程序員的工作效率更高,十年之內不可能完全代替程序員
在CSDN上有一篇報道,有一個名字為Screenshot-to-code-in-Keras的項目可以把一些稿件自動變成一堆html代碼加css代碼,有的前端程序員就可能為此而感覺到恐慌,感覺以後人工智慧要替代自己的飯碗了,這樣的事情也不足為奇,在人工智慧這個概念還沒有興起之前,一些java程序員使用ide開發工具就能生成一堆代碼,節省了開發效率。感覺起碼在近五到十年內感覺人工智慧還不能完全替代人類程序員這樣去編程,就以前端代碼為例,雖然html代碼加效果類css讓人工智慧生成代碼,可能人工智慧在這方面戰術上完勝,但是一些戰略問題它還是遠遠不及人類的。
其一它生成的東西能確保是人類想要的嗎?,如果不符合要求是不是需要人類程序員來調整,人工智慧不可能做出一套適應所有場景的東西出來。
其二前端程序員是要與後端程序員進行對接的,在對接時各個參數,怎麼調用了,相當復雜,兩個人類程序員(前端程序員與後端程序員)還需要溝通好長時間,難道人工智慧就能那麼完美理解人類的意思就不需要溝通了么?
近5到10年內的情況可能是這樣的,一些低級的常規的代碼都可能會是自動生成,一些組織調整的工作交給人類程序員來進行處理,最後項目的質量當然還是有人類進行負責的,由人工智慧的加持,程序員的工作效率可能會大大提高,以往傳統開發需要幾周的工作量可能會縮減到幾天甚至更短。
未來上層領域的程序員數量會減少
隨著時間再往後發展,我想一些上層代碼會逐漸由人工智慧程序自己完成了,可能寫代碼的不再是程序員了,比如說可能是一種操作軟體的形式存在,有著成熟的操作界面,良好的操作體驗,一個非技術人員通過界面輸入自己想要的東西,通過一定的規則描述,然後就會生成相應的代碼並能直接運行。或者比這個更先進,不是一個軟體界面的形式存在,而是一個智能硬體設備,只需要對其說話,像與人類說話那樣,說出自己的需求,智能設備就能在短時間內做出自己想要的東西。
如果真能達到這種程度的話,我想未來參與業務開發的程序員的數量將會急劇減少,但是 不可能減少到為0,因為人工智慧做出的東西也不可能是完全有保證的,起碼需要個別人還需要進行對項目代碼進行負責不是嘛,就想現在的無人駕駛車為啥還留有方向盤一樣。上層開發的人員少了,人工智慧這些底層開發的程序員會更吃香了,甚至數量會多起來。
軟體數量和規模將成倍增長
大家都知道程序做事效率是相對高的,人類做項目是用天,周,年為單位來計算的,那麼這些軟體交給人工智慧處理應該是秒級別的吧,如果是大一點的項目頂多是分鍾了。如果是這樣的話,估計人類世界軟體的發展速度將會達到一個新的高度,軟體的數量和規模將是幾何倍數的增長。
如果真是這樣一天的到來,我想人類在學習和思想上都要有策略上的改變,以前經常在嘴邊說的話,要勤奮,要多動手,未來的人類要做的事情,就是要多思考,勤於思考。動手的事情就交給人工智慧去吧。
那是必然的。不僅程序,看病,甚至很多方面都可以,但是,那種機械的,生冷的東西在幾何級數提高效率的同時也會鑄成,無論如何,這個趨勢不可阻擋,是喜是憂?需要蓋棺定論。
電腦只能處理精確到指令,需求一開始往往是很模糊的,以目前人工智慧自然語言語義理解的發展程度,可能性很低。
8. 人工智慧會不會取代程序員的工作
不可能。(能幫助甚至自主編程的)專家人工智慧可以解放(程序員的)生產力。使軟體成本降低,並使人專注於設計。類比:就像聯合收割機取代不了農民工作一樣。以軟體開發為例:需求分析與設計需要大量的腦力勞動,這一部分目前不可能被AI替代,近幾十年也沒希望。設計後的編碼主要是體力勞動,近幾十年不斷有新語言、新模式、新框架來減少編程中的體力勞動甚至減少腦力勞動,並取得了很大進展。至於AI,已經有一些AI輔助寫代碼了,如微軟的IntelliCode,但絕對談不上能替代程序員。