導航:首頁 > 程序命令 > 學程序員數學

學程序員數學

發布時間:2022-12-21 07:33:30

程序員需要怎樣的數學基礎

離散數學對程序員來說非常重要,還有組合數學、線性代數、概率論、數論等等,即使你將來不做研究,這些基礎知識也能極大地提高你的水平。計算機科學對離散數學的要求很高,建議你先學習前面提到的這些課程,然後學習計算機演算法和數據結構,再配合到網上的在線題庫做題,過程很艱辛,但是對你的幫助會很大。

推薦書目:

《具體數學》(先學完前面的數學課程,在水平有一定進步以後再看)

《演算法導論》(應該人手一本的好書)

簡單來說,學數學的目的,一方面是活躍你的思維;另一方面是為了深入學習演算法打基礎,設想一下,同樣的問題,普通人的程序要幾十分鍾甚至幾小時幾天才能解決出來,甚至根本無法解決,而你精心設計的程序卻能在1秒內解決出來,這就是數學的魅力、演算法的魅力。

其實,一切取決於你是否想做一個高級程序員。如果你做體力活(其實一般編程別人都認為是體力活),那你可以不學,因為你用不到,但是,你要是做技術上的創新,做個很強的程序員,沒有數學的支持,很難。

你既然學習了C,c++,你也知道演算法的重要性,同樣一個問題,我用13行程序解決了,我的同學居然用了33行,因為他不懂的用數學。你要達到什麼高等,取決於你的數學修養。當然,要做一個普通的程序員就不用學習了。要挑戰自己,做個好的,優秀的,學習數學吧!

Ⅱ 做程序員編程需要什麼數學知識,初中文化可以學嗎

1.學習方法:本人認為這比什麼都重要如果這個沒掌握的話,可能直接影響你的成敗。眾所周知。。計算機知識 尤其是編程涉及到的知識可以說浩如煙海---那麼面對這么多的知識該怎麼去學呢?
---重點:1重實踐,不要去想,把一個知識點完全徹底的掌握,那將是非常恐怖的,有編程經驗的朋友都知道,編程里每個知識點深糾起來的話是非常困難的,更不要說是新手了。。那麼知識點該掌握到什麼程度呢? 個人認為:1-知道它是做什麼 2-知道怎麼使用。 這就足夠了。。。。不要去管他的原理是什麼,能把東西做出來才是王道。。。

---重點:2多寫, 這個在編程界可以說是真理了,真正寫程序的人都知道,一段程序你理解了並不代表你就會寫了,那麼怎麼樣才能提高「寫」的能力呢? 本人認為要注意一下幾點 1- 練習多做是必然的。 2- 做練習時不要因為覺得代碼簡單就只看不敲,哪怕多敲一遍HelloWorld 都是有好處的。 3- 相似的代碼不要復制,我見過很多朋友,遇到兩段程序類似,就懶的敲直接粘貼過去修改。。。請記住這是軟體開發人員的做法,而你不是,目前你還只是一個學習者而已。所以 原則就是 能敲的就不要復制。

---重點:3把精力用在理解上而不要用在背上 寫程序的朋友都知道,函數---關鍵字---常用類什麼的,都非常的熟悉,為什麼我們背過嗎?沒有 寫的多了自然就記的牢了, 所以建議新手不要去死背什麼概念,或語法 一定要理解它的作用。。。

---重點:4 筆記,我認為這點很重要,我自學時全是看書,和視頻教程,然後總結對自己有用的東西。記在本上,而將來如果印象不深刻了由於是自己用自己理解的方式寫的,簡單翻一翻就能回憶起來,而如果,你忘了再去翻視頻 或 翻書的話。。那麼即使你曾經學過,也可能一時想不起來。。。

1.關於數學。。。這個問題,我覺得是目前爭論最多的話題,我見過N多人說 學編程要學XX數學---什麼微積分---什麼離散---嚇的新手連想都不敢想,我只想對這些人說一句,如果你懂,請你們幫助新手,如果你們不懂 請你們閉嘴 謝謝不要 誤人子弟。。。那麼下面我來 具體回答一下數學方面的問題。。。
1- 編程用數學嗎? 用! 回答是肯定的,但要看你是做哪方面的程序。 懂編程的都知道,現在編程基本分B/C構架,即:客戶端/瀏覽器端 與 C/S構架 即:客戶端/伺服器端 前者基本上就是JAVA PHP ASP.NET 等等。。。其中有多少地方用到了數學,如果還堅持沒數學學不了編程的朋友請站出來回答下我的問題。。。

至於C/S 如果不是做系統級的程序員 或 大型3D圖象處理 或者是音頻處理的軟體我請問又有多少地方用到了數學?如果你覺得x/y=z 這也算高等數學的話,我無話可說。。。。總結--除了3D等圖象處理編程 或 音頻處理編程 或系統級編程以外 其他編程對數學要求並不很高。。。。

2.關於英語, 我認為這個是個不可迴避的話題,學編程一點英語不懂我覺得不太現實,畢竟有很多文檔也是用英文寫的,而且程序員都知道,編程時經常要用簡單的英文,哪怕是定義個變數名,也要用英文起名, 沒見過哪個程序員定義的變數叫什麼aaa或bbb的。 那麼新手該怎麼面對英語呢, 我覺得很容易,按照書上或教程上去做就足夠了,1 編寫程序時 按規范要求去做,首先變數名,用見名知意思的英文單詞, 寫注釋時 也用英文短句。。。 拋異常時 也用英文來標注等等。。。。慢慢積累,時間久了你就會發現其實計算機里的英語 就只有那麼幾句而已。。。

3.關於學校 這個我也想提一下,有很多想以程序員為工作的朋友可能都考慮過找個培訓班---但我的建議是。不要去---起碼一般的不要去,為什麼?效果不好,就這么簡單,我親自到XXX著名編程培訓學校試聽過。。。結果很遺憾 一周才那麼幾天課,我3天閱讀的知識點比他們1個興趣 教的還多。。。而且上機和理論還是分開,新學的知識不能立刻上機實踐等等。。我覺得都是很嚴重的弊病。。。跟嚴重的那些所謂的學校給學生們造成了一種假象。。。只要在學校里考試合格了,出去就能做程序員,甚至軟體工程師了。。。最後他們將發現,原來他們在學校里學的 只是基礎中的基礎而已 - -

4. 自學的資料,我個人認為,自學第一重要的是 視頻教程,懂的人都知道,編程學習時重點並不完全是知識點,而是如何運用那些知識點,這也是項目經驗今天被人們這么看中的主要原因。。。所以視頻教程絕對是不二的選擇,現在網上的視頻教程非常之多 各種各樣的都有 具體怎麼找相信不用我教了 google 電驢 迅雷--我就是靠他們活過來的 。。。而且視頻教程還有一點是學校比不了的,那就是 你可以隨時看 重復看,一個知識點沒明白 你可以反復的聽10遍 20遍都沒問題, 學校恐怕就不行了吧。 另一個優點是可以在你狀態好時看, 大家都有狀態不好的時候,累了-困了 很正常,可在學校,誰管你? 老師講完了 聽不懂你自己的問題,而視頻呢,好辦 累了 先休息一會 有精神了 想怎麼看就怎麼看。。。我覺得 找到好的視頻教程。。比任何老師都重要。。至於出現問題不懂怎麼辦? 相信能來到著找到我這篇文章的朋友 都有辦法解決的。。

5.書 --- 我非常喜歡看視頻教程,但我堅決反對只看視頻不看書,為什麼?很簡單視頻傳授的是 寫程序的經驗 而書則是細膩的為你講解其中的原理。。所以我的建議是 先把一個知識的視頻看一遍,然後再把書翻一遍 然後自己再寫2遍 量變必然引起質變 我相信這是放之四海 而皆準的道理(指編程行業)

6.時間+態度 我認為這也很重要,很多人經常這樣問我,我1個月能學會編程么? 我半年能成為編程高手么? 我覺得有這樣心理的人比適合學編程。。。 學編程最忌心浮,一個知識點還沒弄明白 就想寫個項目出來 這是不可能的,這樣最後只能導致你自己喪失信心,編程要一步一步的來,相信我哪怕用一天時間才掌握了一個知識點,起碼比你用一天的時間 看完整本書強。。因為前者起碼你還是有點收獲的(指新手,老手兩天一本書很正常有經驗了嗎 - -) 這里我可以給大家一我的學習時間大家可做為參考。。。我是從0基礎開始一直到現在掌握j2ee基本所有的基礎開發技能 用時一年半,本人覺得不算慢 每天最少看書+練習5小時 每天不停這個是我的進度。

Ⅲ 程序員的數學的內容簡介

編程的基礎是計算機科學,而計算機科學的基礎是數學。因此,學習數學有助於鞏固編程的基礎,寫出更健壯的程序。
本書面向程序員介紹了編程中常用的數學知識,藉以培養初級程序員的數學思維。讀者無需精通編程,也無需精通數學,只需具備四則運算和乘方等基礎知識,就可以閱讀本書。
書中講解了二進制計數法、邏輯、余數、排列組合、遞歸、指數爆炸、不可解問題等許多與編程密切相關的數學方法,分析了哥尼斯堡七橋問題、少年高斯求和方法、漢諾塔、斐波那契數列等經典問題和演算法。引導讀者深入理解編程中的數學方法和思路。
本書還對程序員和計算機的分工進行了有益的探討。讀完此書,你會對以程序為媒介的人機合作有更深刻的理解。

Ⅳ 要想成為一名頂尖的程序員,要學習高等數學嗎

必然的,必須的。
頂尖的程序員除了懂寫代碼外還要懂各種演算法的應用。而應用的背景知識就是高等數學。如果只知道寫代碼,那麼還算不上頂尖的程序員,頂多算個中等的程序員。
舉個最簡單的例子,做圖像識別或人臉識別,就是對圖像進行處理。而圖像的本質就是矩陣,因此離不開線性代數的各種運算,特徵求解,規劃求解。
人臉識別中可能還涉及到神經網路的學習和試算梯度預算,就離不開微積分。
再舉個例子,密碼的編譯也離不開矩陣代數應用,無論是密文還是密文轉明文。
還有,文字索引,文本處理……是在太多太多了。以上的知識,還要變成代碼寫入你的程序中的。
所以,光從應用的角度來看,就離不開高等數學。要想成為頂尖的程序員,那就更要學好高等數學。

Ⅳ 做一個程序員數學不好怎麼辦

一般做演算法方面的事情,對程序員數學方面的要求就會高一些;但如果是做一名的普通程序員其實對數學的要求沒那麼高,很多初、高中生的學歷,0基礎也可以學開發,將來一樣能做程序員。而且,像變數這種知識點比較簡單也比較基礎,都涉及不到太深的數學方面的東西。所以,我覺得也許是你對變數這個知識點可能掌握得不是那麼好。學習開發,學習方法也很重要,這塊兒咱們可以私信交流。另外,學習上總會遇到各種各樣的問題,不管你學開發還是學其它的什麼,要放平心態,心態不能崩;放棄是件很容易的事情,但只有堅持下來,你才有可能成為一名優秀的程序員。加油!

Ⅵ 當一個程序員需要多好的數學

任何面向工作的功利的學習行為都可以視為一種投資,必須考慮成本和收益的tradeoff;總體來看,個人認為計算機系本科不教的數學對於絕大多數程序員來說都是沒有必要熟練掌握的數學。

數學不包括演算法。演算法一直是屬於計算機科學領域的。數據結構演算法能力是程序員的核心能力之一,而且永不過時。

當程序員做開發工作,有些方向不太需要數學,有些方向需要特定類型的數學(比如游戲開發、圖形學會用到大量數值工具等);解決特定問題需要學習特定類型的數學;專門做特定領域的計算機科學研究需要用到大量特定領域的數學;既然如此,那就在碰到相應問題的需求去學習對應的知識就好了,沒有必要非要計較到底哪個重要(前提是你應當知道你這個方向需要什麼樣的知識),也沒有必要僅僅是為了提高「數學基礎」而盲目不加選擇的去學習所有種類的數學。

Ⅶ 作為一名合格的程序員,請問需要掌握哪些數學知識,學到什麼樣的水平

程序員的知識是多方面的, 數學方面至少高等數學大專以上文化程度,概率統計,數字邏輯運算方面的知識,主要就是做哪一方面的程序設計,有些學過的可能長期也不用,搞科學研究的、游戲、智能軟體開發、安全方面的要求就高一些,沒有一定數學基礎有些演算法書就讀不懂,搞社會一般應用的要求相對較低一些,這些只是常識,程序員關鍵一點把一門課及相關知識精通,可以把用戶提出的問題很快的自己能夠理解,轉換成計算機處理方式,成為軟體或網站,而且和用戶的需求基本一致。當然有些人的數學水平並不高,設計出的軟體人人愛用,水平很高,程序員的知識包括數學方面的知識也在不斷充實更新中。

Ⅷ 程序員必備的一些數學基礎知識

作為一個標準的程序員,應該有一些基本的數學素養,尤其現在很多人在學習人工智慧相關知識,想抓住一波人工智慧的機會。很多程序員可能連這樣一些基礎的數學問題都回答不上來。

作為一個傲嬌的程序員,應該要掌握這些數學基礎知識,才更有可能碼出一個偉大的產品。

向量 向量(vector)是由一組實數組成的有序數組,同時具有大小和方向。一個n維向量a是由n個有序實數組成,表示為 a = [a1, a2, · · · , an]

矩陣

線性映射 矩陣通常表示一個n維線性空間v到m維線性空間w的一個映射f: v -> w

註:為了書寫方便, X.T ,表示向量X的轉置。 這里: X(x1,x2,...,xn).T,y(y1,y2,...ym).T ,都是列向量。分別表示v,w兩個線性空間中的兩個向量。A(m,n)是一個 m*n 的矩陣,描述了從v到w的一個線性映射。

轉置 將矩陣行列互換。

加法 如果A和B 都為m × n的矩陣,則A和B 的加也是m × n的矩陣,其每個元素是A和B相應元素相加。 [A + B]ij = aij + bij .

乘法 如A是k × m矩陣和B 是m × n矩陣,則乘積AB 是一個k × n的矩陣。

對角矩陣 對角矩陣是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。一個n × n的對角矩陣A滿足: [A]ij = 0 if i ̸= j ∀i, j ∈ {1, · · · , n}

特徵值與特徵矢量 如果一個標量λ和一個非零向量v滿足 Av = λv, 則λ和v分別稱為矩陣A的特徵值和特徵向量。

矩陣分解 一個矩陣通常可以用一些比較「簡單」的矩陣來表示,稱為矩陣分解。

奇異值分解 一個m×n的矩陣A的奇異值分解

其中U 和V 分別為m × m和n×n 的正交矩陣,Σ為m × n的對角矩陣,其對角 線上的元素稱為奇異值(singular value)。

特徵分解 一個n × n的方塊矩陣A的特徵分解(Eigendecomposition)定義為

其中Q為n × n的方塊矩陣,其每一列都為A的特徵向量,^為對角陣,其每一 個對角元素為A的特徵值。 如果A為對稱矩陣,則A可以被分解為

其中Q為正交陣。

導數 對於定義域和值域都是實數域的函數 f : R → R ,若f(x)在點x0 的某個鄰域∆x內,極限

存在,則稱函數f(x)在點x0 處可導, f'(x0) 稱為其導數,或導函數。 若函數f(x)在其定義域包含的某區間內每一個點都可導,那麼也可以說函數f(x)在這個區間內可導。連續函數不一定可導,可導函數一定連續。例如函數|x|為連續函數,但在點x = 0處不可導。

加法法則
y = f(x),z = g(x) 則

乘法法則

鏈式法則 求復合函數導數的一個法則,是在微積分中計算導數的一種常用方法。若 x ∈ R,y = g(x) ∈ R,z = f(y) ∈ R ,則

Logistic函數是一種常用的S形函數,是比利時數學家 Pierre François Verhulst在 1844-1845 年研究種群數量的增長模型時提出命名的,最初作為一種生 態學模型。 Logistic函數定義為:

當參數為 (k = 1, x0 = 0, L = 1) 時,logistic函數稱為標准logistic函數,記 為 σ(x) 。

標准logistic函數在機器學習中使用得非常廣泛,經常用來將一個實數空間的數映射到(0, 1)區間。標准 logistic 函數的導數為:

softmax函數是將多個標量映射為一個概率分布。對於 K 個標量 x1, · · · , xK , softmax 函數定義為

這樣,我們可以將 K 個變數 x1, · · · , xK 轉換為一個分布: z1, · · · , zK ,滿足

當softmax 函數的輸入為K 維向量x時,

其中,1K = [1, · · · , 1]K×1 是K 維的全1向量。其導數為

離散優化和連續優化 :根據輸入變數x的值域是否為實數域,數學優化問題可以分為離散優化問題和連續優化問題。

無約束優化和約束優化 :在連續優化問題中,根據是否有變數的約束條件,可以將優化問題分為無約束優化問題和約束優化問題。 ### 優化演算法

全局最優和局部最優

海賽矩陣

《運籌學裡面有講》,前面一篇文章計算梯度步長的時候也用到了: 梯度下降演算法

梯度的本意是一個向量(矢量),表示某一函數在該點處的方向導數沿著該方向取得最大值,即函數在該點處沿著該方向(此梯度的方向)變化最快,變化率最大(為該梯度的模)。

梯度下降法
梯度下降法(Gradient Descent Method),也叫最速下降法(Steepest Descend Method),經常用來求解無約束優化的極小值問題。

梯度下降法的過程如圖所示。曲線是等高線(水平集),即函數f為不同常數的集合構成的曲線。紅色的箭頭指向該點梯度的反方向(梯度方向與通過該點的等高線垂直)。沿著梯度下降方向,將最終到達函數f 值的局部最優解。

梯度上升法
如果我們要求解一個最大值問題,就需要向梯度正方向迭代進行搜索,逐漸接近函數的局部極大值點,這個過程則被稱為梯度上升法。

概率論主要研究大量隨機現象中的數量規律,其應用十分廣泛,幾乎遍及各個領域。

離散隨機變數

如果隨機變數X 所可能取的值為有限可列舉的,有n個有限取值 {x1, · · · , xn}, 則稱X 為離散隨機變數。要了解X 的統計規律,就必須知道它取每種可能值xi 的概率,即

稱為離散型隨機變數X 的概率分布或分布,並且滿足

常見的離散隨機概率分布有:

伯努利分布

二項分布

連續隨機變數
與離散隨機變數不同,一些隨機變數X 的取值是不可列舉的,由全部實數 或者由一部分區間組成,比如

則稱X 為連續隨機變數。

概率密度函數
連續隨機變數X 的概率分布一般用概率密度函數 p(x) 來描述。 p(x) 為可積函數,並滿足:

均勻分布 若a, b為有限數,[a, b]上的均勻分布的概率密度函數定義為

正態分布 又名高斯分布,是自然界最常見的一種分布,並且具有很多良好的性質,在很多領域都有非常重要的影響力,其概率密度函數為

其中, σ > 0,µ 和 σ 均為常數。若隨機變數X 服從一個參數為 µ 和 σ 的概率分布,簡記為

累積分布函數
對於一個隨機變數X,其累積分布函數是隨機變數X 的取值小於等於x的概率。

以連續隨機變數X 為例,累積分布函數定義為:

其中p(x)為概率密度函數,標准正態分布的累計分布函數:

隨機向量
隨機向量是指一組隨機變數構成的向量。如果 X1, X2, · · · , Xn 為n個隨機變數, 那麼稱 [X1, X2, · · · , Xn] 為一個 n 維隨機向量。一維隨機向量稱為隨機變數。隨機向量也分為離散隨機向量和連續隨機向量。 條件概率分布 對於離散隨機向量 (X, Y) ,已知X = x的條件下,隨機變數 Y = y 的條件概率為:

對於二維連續隨機向量(X, Y ),已知X = x的條件下,隨機變數Y = y 的條件概率密度函數為

期望 對於離散變數X,其概率分布為 p(x1), · · · , p(xn) ,X 的期望(expectation)或均值定義為

對於連續隨機變數X,概率密度函數為p(x),其期望定義為

方差 隨機變數X 的方差(variance)用來定義它的概率分布的離散程度,定義為

標准差 隨機變數 X 的方差也稱為它的二階矩。X 的根方差或標准差。

協方差 兩個連續隨機變數X 和Y 的協方差(covariance)用來衡量兩個隨機變數的分布之間的總體變化性,定義為

協方差經常也用來衡量兩個隨機變數之間的線性相關性。如果兩個隨機變數的協方差為0,那麼稱這兩個隨機變數是線性不相關。兩個隨機變數之間沒有線性相關性,並非表示它們之間獨立的,可能存在某種非線性的函數關系。反之,如果X 與Y 是統計獨立的,那麼它們之間的協方差一定為0。

隨機過程(stochastic process)是一組隨機變數Xt 的集合,其中t屬於一個索引(index)集合T 。索引集合T 可以定義在時間域或者空間域,但一般為時間域,以實數或正數表示。當t為實數時,隨機過程為連續隨機過程;當t為整數時,為離散隨機過程。日常生活中的很多例子包括股票的波動、語音信號、身高的變化等都可以看作是隨機過程。常見的和時間相關的隨機過程模型包括貝努力過程、隨機遊走、馬爾可夫過程等。

馬爾可夫過程 指一個隨機過程在給定現在狀態及所有過去狀態情況下,其未來狀態的條件概率分布僅依賴於當前狀態。

其中X0:t 表示變數集合X0, X1, · · · , Xt,x0:t 為在狀態空間中的狀態序列。

馬爾可夫鏈 離散時間的馬爾可夫過程也稱為馬爾可夫鏈(Markov chain)。如果一個馬爾可夫鏈的條件概率

馬爾可夫的使用可以看前面一篇寫的有意思的文章: 女朋友的心思你能猜得到嗎?——馬爾可夫鏈告訴你 隨機過程還有高斯過程,比較復雜,這里就不詳細說明了。

資訊理論(information theory)是數學、物理、統計、計算機科學等多個學科的交叉領域。資訊理論是由 Claude Shannon最早提出的,主要研究信息的量化、存儲和通信等方法。在機器學習相關領域,資訊理論也有著大量的應用。比如特徵抽取、統計推斷、自然語言處理等。

在資訊理論中,熵用來衡量一個隨機事件的不確定性。假設對一個隨機變數X(取值集合為C概率分布為 p(x), x ∈ C )進行編碼,自信息I(x)是變數X = x時的信息量或編碼長度,定義為 I(x) = − log(p(x)), 那麼隨機變數X 的平均編碼長度,即熵定義為

其中當p(x) = 0時,我們定義0log0 = 0 熵是一個隨機變數的平均編碼長度,即自信息的數學期望。熵越高,則隨機變數的信息越多;熵越低,則信息越少。如果變數X 當且僅當在x時 p(x) = 1 ,則熵為0。也就是說,對於一個確定的信息,其熵為0,信息量也為0。如果其概率分布為一個均勻分布,則熵最大。假設一個隨機變數X 有三種可能值x1, x2, x3,不同概率分布對應的熵如下:

聯合熵和條件熵 對於兩個離散隨機變數X 和Y ,假設X 取值集合為X;Y 取值集合為Y,其聯合概率分布滿足為 p(x, y) ,則X 和Y 的聯合熵(Joint Entropy)為

X 和Y 的條件熵為

互信息 互信息(mutual information)是衡量已知一個變數時,另一個變數不確定性的減少程度。兩個離散隨機變數X 和Y 的互信息定義為

交叉熵和散度 交叉熵 對應分布為p(x)的隨機變數,熵H(p)表示其最優編碼長度。交叉熵是按照概率分布q 的最優編碼對真實分布為p的信息進行編碼的長度,定義為

在給定p的情況下,如果q 和p越接近,交叉熵越小;如果q 和p越遠,交叉熵就越大。

閱讀全文

與學程序員數學相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:758
蘋果郵件無法連接伺服器地址 瀏覽:963
phpffmpeg轉碼 瀏覽:672
長沙好玩的解壓項目 瀏覽:145
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:737
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:486
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:383
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:350
風翼app為什麼進不去了 瀏覽:779
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:151
伊克塞爾文檔怎麼進行加密 瀏覽:893
app轉賬是什麼 瀏覽:163