導航:首頁 > 程序命令 > 登錄hdfs命令

登錄hdfs命令

發布時間:2022-12-31 13:24:46

⑴ HDFS和本地文件系統文件互導

初步了解一下情況,後續根據給出案例

一、從本地文件系統到HDFS

使用hdfs自帶的命令

命令:hdfs dfs -FromLocal inputPath outputPath

inputPath:本地文件目錄的路徑

outputPath:hdfs文件目錄路徑,即存儲路徑

二、從HDFS到本地文件系統

命令:hdfs dfs -ToLocal inputPath outputPath

inputPath:hdfs文件目錄

outputPath:本地文件文件目錄,即本地存儲路徑

因為Hbas和Hive都在存儲在HDFS中,所以可以通過該條命令可以把Hbase和Hive存儲在HDFS中的文件復制出來。但是經過實踐,通過這種方式復制出來的Hbase文件是亂碼。Hive里的文件有時候也會亂碼,這取決於Hive數據的插入方式。

三、文件在HDFS內的移動

1、從Hbase表導出數據到HDFS

命令:hbase org.apache.hadoop.hbase.maprece.Export tableName outputPaht

例子:hbase org.apache.hadoop.hbase.maprece.Export test /user/data

test為需要從Hbase中導出的表,/user/data為hdfs上的路徑,即存儲路徑,如果最後一個參數有前綴file:// 則為本地上的文件存儲系統

2、從HDFS導入到Hbase表中,需要事先建立好表結構

命令:hbase org.apache.hadoop.hbase.maprece.Export tableName inputPaht

例子:hbase org.apache.hadoop.hbase.maprece.Import test1 /temp/part-m-00000

案列:

兩個不同環境數據,數據導入

過程描述:

            導出正式環境數據到hdfs中,然後從hdfs中導出到本地,本地傳到測試環境主機,然後從本地導入到hdfs中,再從hdfs中導入到hbase中。

處理過程:

1、注意事項:1、許可權問題使用hdfs:sudo -u hdfs ;

                      2、存放上傳路徑最好不要在root下

                      3、上傳完成後,查看是否在使用,數據已經插入。

1、sudo -u hdfs hbase org.apache.hadoop.hbase.maprece.Export ** /hbase/**_bak  (導出到hdfs中的**_bak)

2、hdfs dfs -ToLocal /hbase/sw_bak /test  (導出hdfs中文件到本地test,註:提前建好目錄)

3、scp -r test_bak [email protected].**:/root/test  (傳送目錄到測試環境主機目錄下,註:傳到測試環境後,把文件不要放到root的目錄下,換家目錄下)

4、sudo -u hdfs hdfs dfs -FromLocal /chenzeng/text_bak /data (把sw傳到hdfs 中,注意上傳時,文件路徑要對,放在data路徑下比較好)

5、sudo -u hdfs hbase org.apache.hadoop.hbase.maprece.Import test /data/test_bak/part-m-0000 (注意上次文件)

6、在hbase shell 中查看test :count 'test' 確認是否上傳成功

優化:

truncate 『』

正式環境導入至hdfs中時,

可以直接在另一個環境的執行sudo -u hdfs hbase org.apache.hadoop.hbase.maprece.Import test hdfs://server243:8020/hbase****  可以直接加主機和對應路徑進行put。

⑵ 與HDFS命令交互時如何指定文件和目錄確切位

在集群模式下,如果與集群的HDFS交互時,必須指定URI中的scheme、authority、path,三個配置均不能省略。我們可以查看主節點的etc/hadoop/core-site.xml配置文件,查看fs.defaultFS屬性

<property><name>fs.defaultFS</name><value>hdfs://hadoop-master-vm:9000</value></property>

同樣以Hadoop的cat命令為例來顯示example.txt文件內容:hadoop fs -cat hdfs://hadoop-master-vm:9000/user/hadoop/example.txt

⑶ 怎樣進入hdfs的shell命令行

使用方法:hadoopfs-chgrp[-R]GROUPURI[URI…]Changegroupassociationoffiles.With-R,.Theusermustbetheowneroffiles,orelseasuper-user..–>改變文件所屬的組。使用-R將使改變在目錄結構下遞歸進行。命令的使用者必須是文件的所有者或者超級用戶。的信息請參見HDFS許可權用戶指南。

⑷ HDFS常用命令

hdfs dfs -linux命令 操作是一樣
hadoop fs 等同於 hdfs dfs

如果壓縮是false,一般需要自己編譯 支持壓縮,如果是使用CDH系列的,不用擔心 。
自己編譯可參考: https://segmentfault.com/a/1190000038464476?utm_source=sf-similar-article

hadoop 3.2.2的版本dfs.disk.balancer.enabled默認為true,以前的老版本默認值是false,這個參數可以在hdfs-site.xml 中修改。

命令:
hdfs diskbalancer -plan hadoop001 #生成計劃

hdfs diskbalancer -execute hadoop001.plan.json #執行計劃

⑸ 何時使用hadoop fs,hadoop dfs與hdfs dfs命令

hadoop hdfs dfs基本操作
本文主要參考:
http://hadoop.apache.org/docs/r2.6.5/hadoop-project-dist/hadoop-common/FileSystemShell.html

根據上面官方文檔的提示我們能夠知道可以通過shell的方式訪問hdfs中的數據,對數據進行操作。那麼首先讓我們看一下hdfs的版本,使用命令hdfs version。
好,下面上貨:
1、查詢
使用命令:
hdfs dfs -ls / 這條執行會列出/目錄下的文件和目錄
hdfs dfs -ls -R /這條會列出/目錄下的左右文件,由於有-R參數,會在文件夾和子文件夾下執行ls操作。
2、添加文件夾
使用命令;
hdfs dfs -mkdir -p /xytest/testdata001/
這里需要注意的是,root用戶是否擁有hdfs 的許可權,如果有,我們可以繼續操作,如果沒有,我們可以直接使用hdfs用戶,默認安裝完cdh後,用戶hdfs擁有所有的許可權。如果對於許可權有不明白的,推薦看一下我的另一篇文章:
http://blog.csdn.net/wild46cat/article/details/69664376

3、增加文件
使用命令:
hdfs dfs -FromLocal ~/123.txt /xytest/testdata001/
4、查看hdfs文件中的內容
使用命令:
hdfs dfs -cat /xytest/testdata001/123.txt
或者,可以把hdfs中的文件到本地
使用命令:
hdfs dfs -ToLocal /xytest/testdata001/123.txt ~/222.txt
5、刪除文件
使用命令:
hdfs dfs -rm -f /xytest/testdata001/123.txt
6、刪除文件夾
使用命令:
hdfs dfs -rm -r /xytest/testdata001

⑹ 大數據之HDFS

在現代的企業環境中,單機容量往往無法存儲大量數據,需要跨機器存儲。統一管理分布在集群上的文件系統稱為 分布式文件系統

HDFS (Hadoop Distributed File System)是 Hadoop 的核心組件之一, 非常適於存儲大型數據 (比如 TB 和 PB), HDFS 使用多台計算機存儲文件,並且提供統一的訪問介面,像是訪問一個普通文件系統一樣使用分布式文件系統。

HDFS是分布式計算中數據存儲管理的基礎,是基於流數據模式訪問和處理超大文件的需求而開發的,可以運行於廉價的商用伺服器上。它所具有的 高容錯、高可靠性、高可擴展性、高獲得性、高吞吐率 等特徵為海量數據提供了不怕故障的存儲,為超大數據集的應用處理帶來了很多便利。

HDFS 具有以下 優點

當然 HDFS 也有它的 劣勢 ,並不適合以下場合:

HDFS 採用Master/Slave的架構來存儲數據,這種架構主要由四個部分組成,分別為HDFS Client、NameNode、DataNode和Secondary NameNode。

Namenode是整個文件系統的管理節點,負責接收用戶的操作請求。它維護著整個文件系統的目錄樹,文件的元數據信息以及文件到塊的對應關系和塊到節點的對應關系。

Namenode保存了兩個核心的數據結構:

在NameNode啟動的時候,先將fsimage中的文件系統元數據信息載入到內存,然後根據edits中的記錄將內存中的元數據同步到最新狀態;所以,這兩個文件一旦損壞或丟失,將導致整個HDFS文件系統不可用。

為了避免edits文件過大, SecondaryNameNode會按照時間閾值或者大小閾值,周期性的將fsimage和edits合並 ,然後將最新的fsimage推送給NameNode。

並非 NameNode 的熱備。當NameNode 掛掉的時候,它並不能馬上替換 NameNode 並提供服務。其主要任務是輔助 NameNode,定期合並 fsimage和fsedits。

Datanode是實際存儲數據塊的地方,負責執行數據塊的讀/寫操作。

一個數據塊在DataNode以文件存儲在磁碟上,包括兩個文件,一個是數據本身,一個是元數據,包括數據塊的長度,塊數據的校驗和,以及時間戳。

文件劃分成塊,默認大小128M,以快為單位,每個塊有多個副本(默認3個)存儲不同的機器上。

Hadoop2.X默認128M, 小於一個塊的文件,並不會占據整個塊的空間 。Block數據塊大小設置較大的原因:

文件上傳 HDFS 的時候,Client 將文件切分成 一個一個的Block,然後進行存儲。

Client 還提供一些命令來管理 HDFS,比如啟動或者關閉HDFS。

Namenode始終在內存中保存metedata,用於處理「讀請求」,到有「寫請求」到來時,namenode會首 先寫editlog到磁碟,即向edits文件中寫日誌,成功返回後,才會修改內存 ,並且向客戶端返回,Hadoop會維護一個fsimage文件,也就是namenode中metedata的鏡像,但是fsimage不會隨時與namenode內存中的metedata保持一致,而是每隔一段時間通過合並edits文件來更新內容。

HDFS HA(High Availability)是為了解決單點故障問題。

HA集群設置兩個名稱節點,「活躍( Active )」和「待命( Standby )」,兩種名稱節點的狀態同步,可以藉助於一個共享存儲系統來實現,一旦活躍名稱節點出現故障,就可以立即切換到待命名稱節點。

為了保證讀寫數據一致性,HDFS集群設計為只能有一個狀態為Active的NameNode,但這種設計存在單點故障問題,官方提供了兩種解決方案:

通過增加一個Secondary NameNode節點,處於Standby的狀態,與Active的NameNode同時運行。當Active的節點出現故障時,切換到Secondary節點。

為了保證Secondary節點能夠隨時頂替上去,Standby節點需要定時同步Active節點的事務日誌來更新本地的文件系統目錄樹信息,同時DataNode需要配置所有NameNode的位置,並向所有狀態的NameNode發送塊列表信息和心跳。

同步事務日誌來更新目錄樹由JournalNode的守護進程來完成,簡稱為QJM,一個NameNode對應一個QJM進程,當Active節點執行任何命名空間文件目錄樹修改時,它會將修改記錄持久化到大多數QJM中,Standby節點從QJM中監聽並讀取編輯事務日誌內容,並將編輯日誌應用到自己的命名空間。發生故障轉移時,Standby節點將確保在將自身提升為Active狀態之前,從QJM讀取所有編輯內容。

注意,QJM只是實現了數據的備份,當Active節點發送故障時,需要手工提升Standby節點為Active節點。如果要實現NameNode故障自動轉移,則需要配套ZKFC組件來實現,ZKFC也是獨立運行的一個守護進程,基於zookeeper來實現選舉和自動故障轉移。

雖然HDFS HA解決了「單點故障」問題,但是在系統擴展性、整體性能和隔離性方面仍然存在問題:

HDFS HA本質上還是單名稱節點。HDFS聯邦可以解決以上三個方面問題。

在HDFS聯邦中,設計了多個相互獨立的NN,使得HDFS的命名服務能夠水平擴展,這些NN分別進行各自命名空間和塊的管理,不需要彼此協調。每個DN要向集群中所有的NN注冊,並周期性的發送心跳信息和塊信息,報告自己的狀態。

HDFS聯邦擁有多個獨立的命名空間,其中,每一個命名空間管理屬於自己的一組塊,這些屬於同一個命名空間的塊組成一個「塊池」。每個DN會為多個塊池提供塊的存儲,塊池中的各個塊實際上是存儲在不同DN中的。

⑺ hadoop面試題之HDFS

1、簡單介紹下hadoop吧?

    廣義上hadoop是指與hadoop相關的大數據生態圈。包含hive、spark、hbase等。

    狹義上hadoop指的是apache的開源框架。有三個核心組件:

----hdfs:分布式文件存儲系統

----yarn:分布式資源管理調度平台

----mr:分布式計算引擎

2、介紹下hdfs?

全稱為Hadoop Distributed File System。有三個核心組件:

namenode:有三個作用,第一是負責保存集群的元數據信息,第二是負責維護整個集群節點的正常運行。

第三是負責處理客戶端的請求。

datanode:負責實際保存數據。實際執行數據塊的讀寫操作。

secondarynamenode:輔助namenode進行元數據的管理。不是namenode的備份。

3、namenode的工作機制?

    namenode在內存中保存著整個內存系統的名稱空間和文件數據塊的地址映射。整個hdfs可存儲的文件數受限於namenode的內存大小。所以hdfs不適合大量小文件的存儲。

---namenode有三種元數據存儲方式來管理元數據:

    》內存元數據:內存中保存了完整的元數據

    》保存在磁碟上的元數據鏡像文件(fsimage):該文件時hdfs存在磁碟中的元數據檢查點,裡面保存的是最後一次檢查點之前的hdfs文件系統中所有目錄和文件的序列化信息。

    》數據操作日誌文件(edits):用於銜接內存meta data和持久化元數據鏡像fsimage之間的操作日誌文件。保存了自最後一次檢查點之後所有針對hdfs文件系統的操作。如對文件的增刪改查。

4、如何查看元數據信息?

    因為edits和fsimage文件是經過序列化的,所以不能直接查看。hadoop2.0以上提供了查看兩種文件的工具。

----命令:hdfs oiv 可以將fsimage文件轉換成其他格式,如xml和文本文件。-i 表示輸入fsimage文件。-o 輸出文件路徑,-p 指定輸出文件

                hdfs oev可以查看edits文件。同理需要指定相關參數。

詳情查看: https://www.imooc.com/article/79705

4、datanode的工作機制?

    1)以數據塊的形式存儲hdfs文件

    2)datanode響應客戶端的讀寫請求

    3)周期性的向namenode匯報心跳信息、數據塊信息、緩存數據塊信息

5、secondary namenode工作機制?

    當發生checkpoint機制時會觸發second namenode進行工作。checkpoint:

    新的edists文件不會立即和fsimage文件合並,是在edits文件大小超過(默認)64m,或者時間超過(默認)1小時,會觸發checkpoint操作。當checkpoint時,namenode會新建一個edits.new的文件,此時second namenode將文件fsimage文件和edits文件(http get)到本地,然後載入到內存中進行合並,完成的文件名稱為fsimage.ckpt。最後 second namenode將該文件(http post)到namenode,然後edits.new和fsimage.ckpt文件轉換為fsimage和edits。

6、hdfs的文件副本機制?

    所有的文件都是以塊的形式保存到hdfs中。塊的大小默認為128m。在hdfs-site文件中進行指定。

    動態副本創建策略:默認副本數是3,可以在上傳文件時,顯式設定replication。也可以通過指令修改文件的副本數 hadoop fs -setrep -R 1

7、為實現高可用,hdfs採用了哪些策略?

    副本機制、機架感知、心跳機制、安全模式、校驗和、回收站、元數據保護、快照機制(具體介紹導航- https://www.jianshu.com/writer#/notebooks/44567747/notes/66453316 )

8、hdfs的存儲過程?

    ①client向hdfs發起寫請求,通過RPC與namenode建立通訊。namenode檢查文件是否存在等信息,返回是否可以存儲。

    ②client將文件切割為一個個block塊,client申請存儲第一塊block。namenode返回可以存儲這個block塊的datanode的地址,假設為ABC。

    ③A到B到C逐級構建pipeline。client向A上傳第一個packet,默認為64k。A收到一個packet後會將packet傳給B,再傳給C。pipeline反方向返回ack信息。最終由第一個節點A將pipelineack發送給client

    ④一個block完成之後,再進行下一個block的存儲過程。

9、hdfs的讀過程?

10、hdfs的垃圾桶機制?

    hdfs的垃圾桶機制默認是關閉的,需要手動開啟。hdfs刪除的文件不會立刻就刪除,而是在設定的時間後進行刪除。

11、hdfs的擴容和縮容



12、

⑻ hadoop常用shell命令怎麼用

一、常用的hadoop命令
1、hadoop的fs命令
#查看hadoop所有的fs命令

1

hadoop fs

#上傳文件(put與FromLocal都是上傳命令)

1
2

hadoop fs -put jdk-7u55-linux-i586.tar.gz hdfs://hucc01:9000/jdk
hadoop fs -FromLocal jdk-7u55-linux-i586.tar.gz hdfs://hucc01:9000/jdk

#下載命令(get與ToLocal都是下載命令)

1
2

hadoop fs -get hdfs://hucc01:9000/jdk jdk1.7
hadoop fs -ToLocal hdfs://hucc01:9000/jdk jdk1.7

#將本地一個或者多個文件追加到hdfs文件中(appendToFile)

1

hadoop fs -appendToFile install.log /words

#查詢hdfs的所有文件(ls)

1

hadoop fs -ls /

#幫助命令(help)

1

hadoop fs -help fs

#查看hdfs文件的內容(cat和text)

1
2

hadoop fs -cat /words
hadoop fs -text /words

#刪除hdfs文件(rm)

1

hadoop fs -rm -r /words

#統計hdfs文件和文件夾的數量(count)

1

hadoop fs -count -r /

#合並hdfs某個文件夾的文件,並且下載到本地(getmerge)

1

hadoop fs -getmerge / merge

#將本地文件剪切到hdfs,相當於對本地文件上傳後再刪除(moveFormLocal)

1

hadoop fs -moveFromLocal words /

#查看當前文件系統的使用狀態(df)

1

hadoop fs -df

二、常用的hdfs命令(這個用的比較多)
用法跟hadoop命令一樣,推薦2.0之後使用hdfs命令

1

hdfs dfs

⑼ 可以使用如下哪個命令來獲得hdfs狀態的報告

HDFS是Hadoop生態系統的根基,也是Hadoop生態系統中的重要一員,大部分時候,我們都會使用Linux shell命令來管理HDFS,包括一些文件的創建,刪除,修改,上傳等等,因為使用shell命令操作HDFS的方式,相對比較簡單,方便,但是有時候

⑽ spark、hive、impala、hdfs的常用命令

對spark、hive、impala、hdfs的常用命令作了如下總結,歡迎大家補充!

1. Spark的使用:

以通過SecureCRT訪問IP地址:10.10.234.198 為例進行說明:

先輸入:ll //查詢集群是否裝有spark

>su - mr

>/home/mr/spark/bin/beeline -u "jdbc:hive2:/bigdata198:18000/" -n mr -p ""

>show databases; //顯示其中資料庫,例如

>use bigmax; //使用資料庫bigmax

>show tables; //查詢目錄中所有的表

>desc formatted TableName; //顯示表的詳細信息,包括分區、欄位、地址等信息

>desc TableName; //顯示表中的欄位和分區信息

>select count(*) from TableName; //顯示表中數據數量,可以用來判斷表是否為空

>drop table TableName; //刪除表的信息

>drop bigmax //刪除資料庫bigmax

>describe database zxvmax //查詢資料庫zxvmax信息

創建一個表

第一步:

>create external table if not exists lte_Amaze //創建一個叫lte_Amaze的表

( //括弧中每一行為表中的各個欄位的名稱和其所屬的數據類型,並用空格隔開

DateTime String,

MilliSec int,

Network int,

eNodeBID int,

CID int,

IMSI String,

DataType int,

AoA int,

ServerRsrp int,

ServerRsrq int,

TA int,

Cqi0 Tinyint,

Cqi1 Tinyint //注意,最後一個欄位結束後,沒有逗號

)

partitioned by (p_date string, p_hour INT) //以p_date和p_hour作為分區

row format delimited fields terminated by ',' /*/*表中行結構是以逗號作為分隔符,與上邊的表中欄位以逗號結尾相一致*/

stored as textfile; //以文本格式進行保存

第二步:添加分區,指定分區的位置

>alter table lte_Amaze add partition (p_date='2015-01-27',p_hour=0) location'/lte/nds/mr/lte_nds_cdt_uedetail/p_date=2015-01-27/p_hour=0';

//添加lte_Amaze表中分區信息,進行賦值。

//並制定分區對應目錄/lte/nds/mr下表lte_nds_cdt_uedetail中對應分區信息

第三步:察看添加的結果

>show partitions lte_Amaze; //顯示表的分區信息

2. hdfs使用:

#su - hdfs //切換到hdfs用戶下 、

#hadoop fs –ls ///查看進程
# cd /hdfs/bin //進入hdfs安裝bin目錄
>hadoop fs -ls /umtsd/cdt/ //查詢/umtsd/cdt/文件目錄
>hadoop fs -mkdir /umtsd/test //在/umtsd目錄下創建test目錄
>hadoop fs -put /home/data/u1002.csv /impala/data/u5002 //將home/data/u1002.csv這個文件put到hdfs文件目錄上。put到hdfs上的數據文件以逗號「,」分隔符文件(csv),數據不論類型,直接是數據,沒有雙引號和單引號
>hadoop fs -rm /umtsd/test/test.txt //刪除umtsd/test目錄下的test.txt文件
>hadoop fs -cat /umtsd/test/test.txt //查看umtsd/test目錄下的test.txt文件內容

3hive操作使用:
#su - mr //切換到mr用戶下
#hive //進入hive查詢操作界面
hive>show tables; //查詢當前創建的所有表
hive>show databases; //查詢當前創建的資料庫
hive>describe table_name; {或者desc table_name}//查看錶的欄位的定義和分區信息,有明確區分(impala下該命令把分區信息以欄位的形式顯示出來,不怎麼好區分)
hive> show partitions table_name; //查看錶對應數據現有的分區信息,impala下沒有該命令
hive> quit;//退出hive操作界面

hive>desc formatted table_name; 查看錶結構,分隔符等信息

hive> alter table ceshi change id id int; 修改表的列數據類型 //將id數據類型修改為int 注意是兩個id

hive> SHOW TABLES '.*s'; 按正條件(正則表達式)顯示表,

[mr@aico ~]$ exit; 退出mr用戶操作界面,到[root@aico]界面

impala操作使用:
#su - mr //切換到mr用戶下
#cd impala/bin //進入impala安裝bin目錄
#/impala/bin> impala-shell.sh -i 10.10.234.166/localhost //進入impala查詢操作界面
[10.10.234.166:21000] >show databases; //查詢當前創建的資料庫
[10.10.234.166:21000] >use database_name; //選擇使用資料庫,默認情況下是使用default資料庫
[10.10.234.166:21000] > show tables; //查詢當前資料庫下創建的所有表
[10.10.234.166:21000] >describe table_name; //查看錶的欄位的定義,包括分區信息,沒有明確區分
[10.10.234.166:21000] > describe formatted table_name; //查看錶對應格式化信息,包括分區,所屬資料庫,創建用戶,創建時間等詳細信息。
[10.10.234.166:21000] >refresh table_name; //刷新一下,保證元數據是最新的
[10.10.234.166:21000] > alter TABLE U107 ADD PARTITION(reportDate="2013-09-27",rncid=487)LOCATION '/umts/cdt/
MREMITABLE/20130927/rncid=487' //添加分區信息,具體的表和數據的對應關系
[10.10.234.166:21000] > alter TABLE U100 drop PARTITION(reportDate="2013-09-25",rncid=487); //刪除現有的分區,數據與表的關聯
[10.10.234.166:21000] >quit; //退出impala操作界面

[mr@aicod bin]$ impala-shell; 得到welcome impala的信息,進入impala 查詢操作界面

[aicod:21000] > 按兩次tab鍵,查看可以用的命令

alter describe help profile shell values

connect drop history quit show version

create exit insert select unset with

desc explain load set use

閱讀全文

與登錄hdfs命令相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:757
蘋果郵件無法連接伺服器地址 瀏覽:962
phpffmpeg轉碼 瀏覽:671
長沙好玩的解壓項目 瀏覽:144
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:737
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:484
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:381
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:349
風翼app為什麼進不去了 瀏覽:778
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:150
伊克塞爾文檔怎麼進行加密 瀏覽:892
app轉賬是什麼 瀏覽:163