導航:首頁 > 程序命令 > it審計需要調取哪些命令

it審計需要調取哪些命令

發布時間:2023-09-04 20:18:40

Ⅰ 零基礎學python應該學習哪些入門知識

關於零基礎怎麼樣能快速學好Python的問題,網路提問和解答的都很多,你可以網路下看看。我覺得從個人自學的角度出發,應從以下幾個方面來理解:

1 為什麼選擇學python?

據統計零基礎或非專業的人士學python的比較多,據HackerRank開發者調查報告2018年5月顯示(見圖),Python排名第一,成為最受歡迎編程語言。Python以優雅、簡潔著稱,入行門檻低,可以從事linux運維、Python Web網站工程師、Python自動化測試、數據分析、人工智慧等職位,薪資待遇呈上漲趨勢。

2 入門python需要那些准備?

2.1 心態准備。編程是一門技術,也可說是一門手藝。如同書法、繪畫、樂器、雕刻等,技藝純熟的背後肯定付出了長時間的反復練習。不要相信幾周速成,也不能急於求成。編程的世界浩瀚無邊,所以請保持一顆敬畏的心態去學習,認真對待寫下的每一行代碼,甚至每一個字元。收拾好自己的心態,向著編程的世界出發。第一步至關重要,關繫到初學者從入門到精通還是從入門到放棄。選一條合適的入門道路,並堅持走下去。

2.2 配置 Python 學習環境。選Python2 還是 Python3?入門時很多人都會糾結。二者只是程序不兼容,思想上並無大差別,語法變動也並不多。選擇任何一個入手,都沒有大影響。如果你仍然無法抉擇,那請選擇 Python3,畢竟這是未來的趨勢。

編輯器該如何選?同樣,推薦 pycharm 社區版,配置簡單、功能強大、使用起來省時省心,對初學者友好,並且完全免費!其他編輯器如:notepad++、sublimeText 3、vim 和 Emacs等不推薦了。

操作環境?Python 支持現有所有主流操作平台,不管是 windows 還是 mac 還是 linux,都能很好的運行 Python。並且後兩者都默認自帶 Python 環境。

2.3 選擇自學的書籍。我推薦的書的內容由淺入深,建議按照先後順序閱讀學習:

2.3.1《Python簡明教程》。這是一本言簡意賅的 Python 入門教程,簡單直白,沒有廢話。就算沒有基礎,你也可以像讀小說一樣,花兩天時間就可以讀完。適合入門快速了解語法。

2.3.2 廖雪峰編寫的《Python教程》。廖先生的教程涵蓋了 Python 知識的方方面面,內容更加系統,有一定深度,有一定基礎之後學習會有更多的收獲。

2.4 學會安裝包。Python中有很多擴展包,想要安裝這些包可以採用兩種方法:

2.4.1 使用pip或easy_install。

1)在網上找到的需要的包,下載下來。eg. rsa-3.1.4.tar.gz;

2)解壓縮該文件;

3)命令行工具cd切換到所要安裝的包的目錄,找到setup.py文件,然後輸入python setup.py install

2.4.2 不用pip或easy_install,直接打開cmd,敲pip install rsa。

3 提升階段需要恆心和耐力。

完成入門階段的基礎學習之後,常會陷入一個瓶頸期,通過看教程很難進一步提高編程水平。這時候,需要的是反復練習,大量的練習。可以從書上的例題、作業題開始寫,再寫小程序片段,然後寫完整的項目。我們收集了一些練習題和網站。可根據自己階段,選擇適合的練習去做。建議最好挑選一兩個系列重點完成,而不是淺嘗輒止。

3.1 多做練習。推薦網站練習:

crossin編程教室實例:相對於編程教室基礎練習著重於單一知識點,

編程實例訓練對基礎知識的融會貫通;

hackerrank:Python 部分難度循序漸進,符合學習曲線

實驗樓:提升編程水平從做項目開始;

codewar:社區型編程練習網站,內容由易到難;

leetcode:為編程面試准備,對初學者稍難;

牛客網:提供 BAT 等大廠筆試題目;

codecombat:提供一邊游戲一邊編程;

projecteuler:純粹的編程練習網站;

菜鳥教程100例:基於 py2 的基礎練習;

3.2 遇到問題多交流。

3.2.1 利用好搜索引擎。

3.2.2 求助於各大網站。推薦

stackoverflow:這是一個程序員的知識庫;

v2ex:國內非常不錯的編程社區,不僅僅是包含程序,也包含了程序員的生活;

segmentfault:一家以編程問答為主的網站;

CSDN、知乎、簡書等

3.2.3 加入相關的QQ、微信群、網路知道。不懂的可以隨時請教。

Ⅱ python零基礎學習課程哪個好

對於零基礎的朋友,如果選擇自學的話,我按由淺入深的順序推薦:

1 《父與子的編程之旅》。了解了計算機的基本運行原理和編程的基本概念。

2 《Python簡明教程》。這是一本言簡意賅的 Python 入門教程,簡單直白,沒有廢話。就算沒有基礎,你也可以像讀小說一樣,花幾天時間就可以讀完,適合快速了解語法。

3 廖雪峰編寫的《Python教程》。廖先生的教程涵蓋了 Python 知識的方方面面,內容更加系統,有一定深度,有一定基礎之後學習會有更多的收獲。

4 可以參考的書有《笨辦法學Python》,《Head First Python》,《Python編程-從入門到實踐》。

注意:在學習編程的時候一定要注重編碼實踐,不寫大量的代碼,是學不好編程的,而且要培養自己的編程思維,邏輯思維。

Ⅲ python後端開發需要學什麼

第一階段:Python語言基礎


主要學習Python最基礎知識,如Python3、數據類型、字元串、函數、類、文件操作等。階段課程結束後,學員需要完成Pygame實戰飛機大戰、2048等項目。


第二階段:Python語言高級


主要學習Python庫、正則表達式、進程線程、爬蟲、遍歷以及MySQL資料庫。


第三階段:Pythonweb開發


主要學習HTML、CSS、JavaScript、jQuery等前端知識,掌握python三大後端框架(Django、 Flask以及Tornado)。需要完成網頁界面設計實戰;能獨立開發網站。


第四階段:Linux基礎


主要學習Linux相關的各種命令,如文件處理命令、壓縮解壓命令、許可權管理以及Linux Shell開發等。


第五階段:Linux運維自動化開發


主要學習Python開發Linux運維、Linux運維報警工具開發、Linux運維報警安全審計開發、Linux業務質量報表工具開發、Kali安全檢測工具檢測以及Kali 密碼破解實戰。


第六階段:Python爬蟲


主要學習python爬蟲技術,掌握多線程爬蟲技術,分布式爬蟲技術。


第七階段:Python數據分析和大數據


主要學習numpy數據處理、pandas數據分析、matplotlib數據可視化、scipy數據統計分析以及python 金融數據分析;Hadoop HDFS、python Hadoop MapRece、python Spark core、python Spark SQL以及python Spark MLlib。


第八階段:Python機器學習


主要學習KNN演算法、線性回歸、邏輯斯蒂回歸演算法、決策樹演算法、樸素貝葉斯演算法、支持向量機以及聚類k-means演算法。


關於python後端開發需要學什麼的內容,青藤小編就和您分享到這里了。如果您對python編程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於python編程的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅳ 零基礎學習python需要怎麼入手

編程零基礎的學習Python全棧可以按照以下內容來:
階段一:Python開發基礎
Python全棧開發與人工智慧之Python開發基礎知識學習內容包括:Python基礎語法、數據類型、字元編碼、文件操作、函數、裝飾器、迭代器、內置方法、常用模塊等。
階段二:Python高級編程和資料庫開發
Python全棧開發與人工智慧之Python高級編程和資料庫開發知識學習內容包括:面向對象開發、Socket網路編程、線程、進程、隊列、IO多路模型、Mysql資料庫開發等。
階段三:前端開發
Python全棧開發與人工智慧之前端開發知識學習內容包括:Html、CSS、JavaScript開發、Jquery&bootstrap開發、前端框架VUE開發等。
階段四:WEB框架開發
Python全棧開發與人工智慧之WEB框架開發學習內容包括:Django框架基礎、Django框架進階、BBS+Blog實戰項目開發、緩存和隊列中間件、Flask框架學習、Tornado框架學習、Restful API等。
階段五:爬蟲開發
Python全棧開發與人工智慧之爬蟲開發學習內容包括:爬蟲開發實戰。
階段六:全棧項目實戰
Python全棧開發與人工智慧之全棧項目實戰學習內容包括:企業應用工具學習、CRM客戶關系管理系統開發、路飛學城在線教育平台開發等。
階段七:數據分析
Python全棧開發與人工智慧之數據分析學習內容包括:金融量化分析。
階段八:人工智慧
Python全棧開發與人工智慧之人工智慧學習內容包括:機器學習、圖形識別、無人機開發、無人駕駛等。
階段九:自動化運維&開發
Python全棧開發與人工智慧之自動化運維&開發學習內容包括:CMDB資產管理系統開發、IT審計+主機管理系統開發、分布式主機監控系統開發等。
階段十:高並發語言GO開發
Python全棧開發與人工智慧之高並發語言GO開發學習內容包括:GO語言基礎、數據類型與文件IO操作、函數和面向對象、並發編程等。

Ⅳ 學習Python需要哪些准備

小蝸這里整理了一份Python全棧開發系統的學習路線,每個階段所要掌握的知識都已列出,題主可參考這份大綱來進行學習規劃;

第一階段:專業核心基礎

階段目標:

1. 熟練掌握Python的開發環境與編程核心知識

2. 熟練運用Python面向對象知識進行程序開發

3. 對Python的核心庫和組件有深入理解

4. 熟練應用SQL語句進行資料庫常用操作

5. 熟練運用Linux操作系統命令及環境配置

6. 熟練使用MySQL,掌握資料庫高級操作

7. 能綜合運用所學知識完成項目

知識點:

Python編程基礎、Python面向對象、Python高級進階、MySQL資料庫、Linux操作系統。

1、Python編程基礎,語法規則,函數與參數,數據類型,模塊與包,文件IO,培養扎實的Python編程基本功,同時對Python核心對象和庫的編程有熟練的運用。

2、Python面向對象,核心對象,異常處理,多線程,網路編程,深入理解面向對象編程,異常處理機制,多線程原理,網路協議知識,並熟練運用於項目中。

3、類的原理,MetaClass,下劃線的特殊方法,遞歸,魔術方法,反射,迭代器,裝飾器,UnitTest,Mock。深入理解面向對象底層原理,掌握Python開發高級進階技術,理解單元測試技術。

4、資料庫知識,範式,MySQL配置,命令,建庫建表,數據的增刪改查,約束,視圖,存儲過程,函數,觸發器,事務,游標,PDBC,深入理解資料庫管理系統通用知識及MySQL資料庫的使用與管理。為Python後台開發打下堅實基礎。

5、Linux安裝配置,文件目錄操作,VI命令,管理,用戶與許可權,環境配置,Docker,Shell編程Linux作為一個主流的伺服器操作系統,是每一個開發工程師必須掌握的重點技術,並且能夠熟練運用。

第二階段:PythonWEB開發

階段目標:

1. 熟練掌握Web前端開發技術,HTML,CSS,JavaScript及前端框架

2. 深入理解Web系統中的前後端交互過程與通信協議

3. 熟練運用Web前端和Django和Flask等主流框架完成Web系統開發

4. 深入理解網路協議,分布式,PDBC,AJAX,JSON等知識

5. 能夠運用所學知識開發一個MiniWeb框架,掌握框架實現原理

6. 使用Web開發框架實現貫穿項目

知識點:

Web前端編程、Web前端高級、Django開發框架、Flask開發框架、Web開發項目實戰。

1、Web頁面元素,布局,CSS樣式,盒模型,JavaScript,JQuery與Bootstrap掌握前端開發技術,掌握JQuery與BootStrap前端開發框架,完成頁面布局與美化。

2、前端開發框架Vue,JSON數據,網路通信協議,Web伺服器與前端交互熟練使用Vue框架,深入理解HTTP網路協議,熟練使用Swagger,AJAX技術實現前後端交互。

3、自定義Web開發框架,Django框架的基本使用,Model屬性及後端配置,Cookie與Session,模板Templates,ORM數據模型,Redis二級緩存,RESTful,MVC模型掌握Django框架常用API,整合前端技術,開發完整的WEB系統和框架。

4、Flask安裝配置,App對象的初始化和配置,視圖函數的路由,Request對象,Abort函數,自定義錯誤,視圖函數的返回值,Flask上下文和請求鉤子,模板,資料庫擴展包Flask-Sqlalchemy,資料庫遷移擴展包Flask-Migrate,郵件擴展包Flask-Mail。掌握Flask框架的常用API,與Django框架的異同,並能獨立開發完整的WEB系統開發。

第三階段:爬蟲與數據分析

階段目標:

1. 熟練掌握爬蟲運行原理及常見網路抓包工具使用,能夠對HTTP及HTTPS協議進行抓包分析

2. 熟練掌握各種常見的網頁結構解析庫對抓取結果進行解析和提取

3. 熟練掌握各種常見反爬機制及應對策略,能夠針對常見的反爬措施進行處理

4. 熟練使用商業爬蟲框架Scrapy編寫大型網路爬蟲進行分布式內容爬取

5. 熟練掌握數據分析相關概念及工作流程

6. 熟練掌握主流數據分析工具Numpy、Pandas和Matplotlib的使用

7. 熟練掌握數據清洗、整理、格式轉換、數據分析報告編寫

8. 能夠綜合利用爬蟲爬取豆瓣網電影評論數據並完成數據分析全流程項目實戰

知識點:

網路爬蟲開發、數據分析之Numpy、數據分析之Pandas。

1、爬蟲頁面爬取原理、爬取流程、頁面解析工具LXML,Beautifulfoup,正則表達式,代理池編寫和架構、常見反爬措施及解決方案、爬蟲框架結構、商業爬蟲框架Scrapy,基於對爬蟲爬取原理、網站數據爬取流程及網路協議的分析和了解,掌握網頁解析工具的使用,能夠靈活應對大部分網站的反爬策略,具備獨立完成爬蟲框架的編寫能力和熟練應用大型商業爬蟲框架編寫分布式爬蟲的能力。

2、Numpy中的ndarray數據結構特點、numpy所支持的數據類型、自帶的數組創建方法、算術運算符、矩陣積、自增和自減、通用函數和聚合函數、切片索引、ndarray的向量化和廣播機制,熟悉數據分析三大利器之一Numpy的常見使用,熟悉ndarray數據結構的特點和常見操作,掌握針對不同維度的ndarray數組的分片、索引、矩陣運算等操作。

3、Pandas裡面的三大數據結構,包括Dataframe、Series和Index對象的基本概念和使用,索引對象的更換及刪除索引、算術和數據對齊方法,數據清洗和數據規整、結構轉換,熟悉數據分析三大利器之一Pandas的常見使用,熟悉Pandas中三大數據對象的使用方法,能夠使用Pandas完成數據分析中最重要的數據清洗、格式轉換和數據規整工作、Pandas對文件的讀取和操作方法。

4、matplotlib三層結構體系、各種常見圖表類型折線圖、柱狀圖、堆積柱狀圖、餅圖的繪制、圖例、文本、標線的添加、可視化文件的保存,熟悉數據分析三大利器之一Matplotlib的常見使用,熟悉Matplotlib的三層結構,能夠熟練使用Matplotlib繪制各種常見的數據分析圖表。能夠綜合利用課程中所講的各種數據分析和可視化工具完成股票市場數據分析和預測、共享單車用戶群里數據分析、全球幸福指數數據分析等項目的全程實戰。

第四階段:機器學習與人工智慧

階段目標:

1. 理解機器學習相關的基本概念及系統處理流程

2. 能夠熟練應用各種常見的機器學習模型解決監督學習和非監督學習訓練和測試問題,解決回歸、分類問題

3. 熟練掌握常見的分類演算法和回歸演算法模型,如KNN、決策樹、隨機森林、K-Means等

4. 掌握卷積神經網路對圖像識別、自然語言識別問題的處理方式,熟悉深度學習框架TF裡面的張量、會話、梯度優化模型等

5. 掌握深度學習卷積神經網路運行機制,能夠自定義卷積層、池化層、FC層完成圖像識別、手寫字體識別、驗證碼識別等常規深度學習實戰項目

知識點:

1、機器學習常見演算法、sklearn數據集的使用、字典特徵抽取、文本特徵抽取、歸一化、標准化、數據主成分分析PCA、KNN演算法、決策樹模型、隨機森林、線性回歸及邏輯回歸模型和演算法。熟悉機器學習相關基礎概念,熟練掌握機器學習基本工作流程,熟悉特徵工程、能夠使用各種常見機器學習演算法模型解決分類、回歸、聚類等問題。

2、Tensorflow相關的基本概念,TF數據流圖、會話、張量、tensorboard可視化、張量修改、TF文件讀取、tensorflow playround使用、神經網路結構、卷積計算、激活函數計算、池化層設計,掌握機器學習和深度學習之前的區別和練習,熟練掌握深度學習基本工作流程,熟練掌握神經網路的結構層次及特點,掌握張量、圖結構、OP對象等的使用,熟悉輸入層、卷積層、池化層和全連接層的設計,完成驗證碼識別、圖像識別、手寫輸入識別等常見深度學習項目全程實戰。

閱讀全文

與it審計需要調取哪些命令相關的資料

熱點內容
OBV能量潮幅圖指標源碼 瀏覽:911
編程15個好習慣 瀏覽:674
電腦u盤文件夾顯示屏幕保護程序 瀏覽:797
我的世界伺服器版本怎麼下載 瀏覽:600
c代碼加密工具 瀏覽:355
使用泛型演算法的錯誤 瀏覽:737
單片機焊接要焊接多少個引腳 瀏覽:669
android圖片瀏覽器代碼 瀏覽:705
中國電信智慧維app如何使用 瀏覽:701
列印文件夾內文件如何統一設置 瀏覽:553
單片機連接8個按鍵 瀏覽:656
阿里雲伺服器網頁怎麼找到 瀏覽:958
數控車床如何進行自動編程 瀏覽:11
app網課視頻怎麼拷貝到電腦上 瀏覽:710
安卓國服光遇小王子季節什麼時候結束 瀏覽:537
恢復的音樂在哪個文件夾 瀏覽:595
qq傳輸文件夾壓縮包 瀏覽:911
sha1加密演算法java 瀏覽:234
單片機ds1302程序 瀏覽:738
杜比壓縮開還是關怎樣判斷 瀏覽:367