導航:首頁 > 程序命令 > hadoop程序員實例

hadoop程序員實例

發布時間:2023-12-24 01:11:21

『壹』 hadoop的maprece常見演算法案例有幾種

基本MapRece模式

計數與求和
問題陳述:
有許多文檔,每個文檔都有一些欄位組成。需要計算出每個欄位在所有文檔中的出現次數或者這些欄位的其他什麼統計值。例如,給定一個log文件,其中的每條記錄都包含一個響應時間,需要計算出平均響應時間。
解決方案:
讓我們先從簡單的例子入手。在下面的代碼片段里,Mapper每遇到指定詞就把頻次記1,Recer一個個遍歷這些詞的集合然後把他們的頻次加和。

1 class Mapper
2 method Map(docid id, doc d)
3 for all term t in doc d do
4 Emit(term t, count 1)
5
6 class Recer
7 method Rece(term t, counts [c1, c2,...])
8 sum = 0
9 for all count c in [c1, c2,...] do
10 sum = sum + c
11 Emit(term t, count sum)

這種方法的缺點顯而易見,Mapper提交了太多無意義的計數。它完全可以通過先對每個文檔中的詞進行計數從而減少傳遞給Recer的數據量:

1 class Mapper
2 method Map(docid id, doc d)
3 H = new AssociativeArray
4 for all term t in doc d do
5 H{t} = H{t} + 1
6 for all term t in H do
7 Emit(term t, count H{t})

如果要累計計數的的不只是單個文檔中的內容,還包括了一個Mapper節點處理的所有文檔,那就要用到Combiner了:

1 class Mapper
2 method Map(docid id, doc d)
3 for all term t in doc d do
4 Emit(term t, count 1)
5
6 class Combiner
7 method Combine(term t, [c1, c2,...])
8 sum = 0
9 for all count c in [c1, c2,...] do
10 sum = sum + c
11 Emit(term t, count sum)
12
13 class Recer
14 method Rece(term t, counts [c1, c2,...])
15 sum = 0
16 for all count c in [c1, c2,...] do
17 sum = sum + c
18 Emit(term t, count sum)

應用:Log 分析, 數據查詢

整理歸類

問題陳述:
有一系列條目,每個條目都有幾個屬性,要把具有同一屬性值的條目都保存在一個文件里,或者把條目按照屬性值分組。 最典型的應用是倒排索引。
解決方案:
解決方案很簡單。 在 Mapper 中以每個條目的所需屬性值作為 key,其本身作為值傳遞給 Recer。 Recer 取得按照屬性值分組的條目,然後可以處理或者保存。如果是在構建倒排索引,那麼 每個條目相當於一個詞而屬性值就是詞所在的文檔ID。
應用:倒排索引, ETL
過濾 (文本查找),解析和校驗
問題陳述:
假設有很多條記錄,需要從其中找出滿足某個條件的所有記錄,或者將每條記錄傳換成另外一種形式(轉換操作相對於各條記錄獨立,即對一條記錄的操作與其他記錄無關)。像文本解析、特定值抽取、格式轉換等都屬於後一種用例。
解決方案:
非常簡單,在Mapper 里逐條進行操作,輸出需要的值或轉換後的形式。
應用:日誌分析,數據查詢,ETL,數據校驗

分布式任務執行

問題陳述:
大型計算可以分解為多個部分分別進行然後合並各個計算的結果以獲得最終結果。
解決方案: 將數據切分成多份作為每個 Mapper 的輸入,每個Mapper處理一份數據,執行同樣的運算,產生結果,Recer把多個Mapper的結果組合成一個。
案例研究: 數字通信系統模擬
像 WiMAX 這樣的數字通信模擬軟體通過系統模型來傳輸大量的隨機數據,然後計算傳輸中的錯誤幾率。 每個 Mapper 處理樣本 1/N 的數據,計算出這部分數據的錯誤率,然後在 Recer 里計算平均錯誤率。
應用:工程模擬,數字分析,性能測試
排序
問題陳述:
有許多條記錄,需要按照某種規則將所有記錄排序或是按照順序來處理記錄。
解決方案: 簡單排序很好辦 – Mappers 將待排序的屬性值為鍵,整條記錄為值輸出。 不過實際應用中的排序要更加巧妙一點, 這就是它之所以被稱為MapRece 核心的原因(「核心」是說排序?因為證明Hadoop計算能力的實驗是大數據排序?還是說Hadoop的處理過程中對key排序的環節?)。在實踐中,常用組合鍵來實現二次排序和分組。
MapRece 最初只能夠對鍵排序, 但是也有技術利用可以利用Hadoop 的特性來實現按值排序。想了解的話可以看這篇博客。
按照BigTable的概念,使用 MapRece來對最初數據而非中間數據排序,也即保持數據的有序狀態更有好處,必須注意這一點。換句話說,在數據插入時排序一次要比在每次查詢數據的時候排序更高效。
應用:ETL,數據分析

非基本 MapRece 模式

迭代消息傳遞 (圖處理)

問題陳述:
假設一個實體網路,實體之間存在著關系。 需要按照與它比鄰的其他實體的屬性計算出一個狀態。這個狀態可以表現為它和其它節點之間的距離, 存在特定屬性的鄰接點的跡象, 鄰域密度特徵等等。
解決方案:
網路存儲為系列節點的結合,每個節點包含有其所有鄰接點ID的列表。按照這個概念,MapRece 迭代進行,每次迭代中每個節點都發消息給它的鄰接點。鄰接點根據接收到的信息更新自己的狀態。當滿足了某些條件的時候迭代停止,如達到了最大迭代次數(網路半徑)或兩次連續的迭代幾乎沒有狀態改變。從技術上來看,Mapper 以每個鄰接點的ID為鍵發出信息,所有的信息都會按照接受節點分組,recer 就能夠重算各節點的狀態然後更新那些狀態改變了的節點。下面展示了這個演算法:

1 class Mapper
2 method Map(id n, object N)
3 Emit(id n, object N)
4 for all id m in N.OutgoingRelations do
5 Emit(id m, message getMessage(N))
6
7 class Recer
8 method Rece(id m, [s1, s2,...])
9 M = null
10 messages = []
11 for all s in [s1, s2,...] do
12 if IsObject(s) then
13 M = s
14 else // s is a message
15 messages.add(s)
16 M.State = calculateState(messages)
17 Emit(id m, item M)

一個節點的狀態可以迅速的沿著網路傳全網,那些被感染了的節點又去感染它們的鄰居,整個過程就像下面的圖示一樣:

案例研究: 沿分類樹的有效性傳遞
問題陳述:
這個問題來自於真實的電子商務應用。將各種貨物分類,這些類別可以組成一個樹形結構,比較大的分類(像男人、女人、兒童)可以再分出小分類(像男褲或女裝),直到不能再分為止(像男式藍色牛仔褲)。這些不能再分的基層類別可以是有效(這個類別包含有貨品)或者已無效的(沒有屬於這個分類的貨品)。如果一個分類至少含有一個有效的子分類那麼認為這個分類也是有效的。我們需要在已知一些基層分類有效的情況下找出分類樹上所有有效的分類。
解決方案:
這個問題可以用上一節提到的框架來解決。我們咋下面定義了名為 getMessage和 calculateState 的方法:

1 class N
2 State in {True = 2, False = 1, null = 0},
3 initialized 1 or 2 for end-of-line categories, 0 otherwise
4 method getMessage(object N)
5 return N.State
6 method calculateState(state s, data [d1, d2,...])
7 return max( [d1, d2,...] )

案例研究:廣度優先搜索
問題陳述:需要計算出一個圖結構中某一個節點到其它所有節點的距離。
解決方案: Source源節點給所有鄰接點發出值為0的信號,鄰接點把收到的信號再轉發給自己的鄰接點,每轉發一次就對信號值加1:

1 class N
2 State is distance,
3 initialized 0 for source node, INFINITY for all other nodes
4 method getMessage(N)
5 return N.State + 1
6 method calculateState(state s, data [d1, d2,...])
7 min( [d1, d2,...] )

案例研究:網頁排名和 Mapper 端數據聚合
這個演算法由Google提出,使用權威的PageRank演算法,通過連接到一個網頁的其他網頁來計算網頁的相關性。真實演算法是相當復雜的,但是核心思想是權重可以傳播,也即通過一個節點的各聯接節點的權重的均值來計算節點自身的權重。

1 class N
2 State is PageRank
3 method getMessage(object N)
4 return N.State / N.OutgoingRelations.size()
5 method calculateState(state s, data [d1, d2,...])
6 return ( sum([d1, d2,...]) )

要指出的是上面用一個數值來作為評分實際上是一種簡化,在實際情況下,我們需要在Mapper端來進行聚合計算得出這個值。下面的代碼片段展示了這個改變後的邏輯 (針對於 PageRank 演算法):

1 class Mapper
2 method Initialize
3 H = new AssociativeArray
4 method Map(id n, object N)
5 p = N.PageRank / N.OutgoingRelations.size()
6 Emit(id n, object N)
7 for all id m in N.OutgoingRelations do
8 H{m} = H{m} + p
9 method Close
10 for all id n in H do
11 Emit(id n, value H{n})
12
13 class Recer
14 method Rece(id m, [s1, s2,...])
15 M = null
16 p = 0
17 for all s in [s1, s2,...] do
18 if IsObject(s) then
19 M = s
20 else
21 p = p + s
22 M.PageRank = p
23 Emit(id m, item M)

應用:圖分析,網頁索引

值去重 (對唯一項計數)
問題陳述: 記錄包含值域F和值域 G,要分別統計相同G值的記錄中不同的F值的數目 (相當於按照 G分組).
這個問題可以推而廣之應用於分面搜索(某些電子商務網站稱之為Narrow Search)
Record 1: F=1, G={a, b}
Record 2: F=2, G={a, d, e}
Record 3: F=1, G={b}
Record 4: F=3, G={a, b}

Result:
a -> 3 // F=1, F=2, F=3
b -> 2 // F=1, F=3
d -> 1 // F=2
e -> 1 // F=2

解決方案 I:
第一種方法是分兩個階段來解決這個問題。第一階段在Mapper中使用F和G組成一個復合值對,然後在Recer中輸出每個值對,目的是為了保證F值的唯一性。在第二階段,再將值對按照G值來分組計算每組中的條目數。
第一階段:

1 class Mapper
2 method Map(null, record [value f, categories [g1, g2,...]])
3 for all category g in [g1, g2,...]
4 Emit(record [g, f], count 1)
5
6 class Recer
7 method Rece(record [g, f], counts [n1, n2, ...])
8 Emit(record [g, f], null )

第二階段:

1 class Mapper
2 method Map(record [f, g], null)
3 Emit(value g, count 1)
4
5 class Recer
6 method Rece(value g, counts [n1, n2,...])
7 Emit(value g, sum( [n1, n2,...] ) )

解決方案 II:
第二種方法只需要一次MapRece 即可實現,但擴展性不強。演算法很簡單-Mapper 輸出值和分類,在Recer里為每個值對應的分類去重然後給每個所屬的分類計數加1,最後再在Recer結束後將所有計數加和。這種方法適用於只有有限個分類,而且擁有相同F值的記錄不是很多的情況。例如網路日誌處理和用戶分類,用戶的總數很多,但是每個用戶的事件是有限的,以此分類得到的類別也是有限的。值得一提的是在這種模式下可以在數據傳輸到Recer之前使用Combiner來去除分類的重復值。

1 class Mapper
2 method Map(null, record [value f, categories [g1, g2,...] )
3 for all category g in [g1, g2,...]
4 Emit(value f, category g)
5
6 class Recer
7 method Initialize
8 H = new AssociativeArray : category -> count
9 method Rece(value f, categories [g1, g2,...])
10 [g1', g2',..] = ExcludeDuplicates( [g1, g2,..] )
11 for all category g in [g1', g2',...]
12 H{g} = H{g} + 1
13 method Close
14 for all category g in H do
15 Emit(category g, count H{g})

應用:日誌分析,用戶計數
互相關
問題陳述:有多個各由若干項構成的組,計算項兩兩共同出現於一個組中的次數。假如項數是N,那麼應該計算N*N。
這種情況常見於文本分析(條目是單詞而元組是句子),市場分析(購買了此物的客戶還可能購買什麼)。如果N*N小到可以容納於一台機器的內存,實現起來就比較簡單了。
配對法
第一種方法是在Mapper中給所有條目配對,然後在Recer中將同一條目對的計數加和。但這種做法也有缺點:
使用 combiners 帶來的的好處有限,因為很可能所有項對都是唯一的
不能有效利用內存

1 class Mapper
2 method Map(null, items [i1, i2,...] )
3 for all item i in [i1, i2,...]
4 for all item j in [i1, i2,...]
5 Emit(pair [i j], count 1)
6
7 class Recer
8 method Rece(pair [i j], counts [c1, c2,...])
9 s = sum([c1, c2,...])
10 Emit(pair[i j], count s)

Stripes Approach(條方法?不知道這個名字怎麼理解)
第二種方法是將數據按照pair中的第一項來分組,並維護一個關聯數組,數組中存儲的是所有關聯項的計數。The second approach is to group data by the first item in pair and maintain an associative array (「stripe」) where counters for all adjacent items are accumulated. Recer receives all stripes for leading item i, merges them, and emits the same result as in the Pairs approach.
中間結果的鍵數量相對較少,因此減少了排序消耗。
可以有效利用 combiners。
可在內存中執行,不過如果沒有正確執行的話也會帶來問題。
實現起來比較復雜。
一般來說, 「stripes」 比 「pairs」 更快

1 class Mapper
2 method Map(null, items [i1, i2,...] )
3 for all item i in [i1, i2,...]
4 H = new AssociativeArray : item -> counter
5 for all item j in [i1, i2,...]
6 H{j} = H{j} + 1
7 Emit(item i, stripe H)
8
9 class Recer
10 method Rece(item i, stripes [H1, H2,...])
11 H = new AssociativeArray : item -> counter
12 H = merge-sum( [H1, H2,...] )
13 for all item j in H.keys()
14 Emit(pair [i j], H{j})

應用:文本分析,市場分析
參考資料:Lin J. Dyer C. Hirst G. Data Intensive Processing MapRece
用MapRece 表達關系模式
在這部分我們會討論一下怎麼使用MapRece來進行主要的關系操作。
篩選(Selection)

1 class Mapper
2 method Map(rowkey key, tuple t)
3 if t satisfies the predicate
4 Emit(tuple t, null)

投影(Projection)
投影只比篩選稍微復雜一點,在這種情況下我們可以用Recer來消除可能的重復值。

1 class Mapper
2 method Map(rowkey key, tuple t)
3 tuple g = project(t) // extract required fields to tuple g
4 Emit(tuple g, null)
5
6 class Recer

『貳』 怎麼優化hadoop任務調度演算法

首先介紹了Hadoop平台下作業的分布式運行機制,然後對Hadoop平台自帶的4種任務調度器做分析和比較,最後在分析JobTracker類文件的基礎上指出了創建自定義任務調度器所需完成的工作。
首先Hadoop集群式基於單伺服器的,只有一個伺服器節點負責調度整個集群的作業運行,主要的具體工作是切分大數據量的作業,指定哪些Worker節點做Map工作、哪些Worker節點做Rece工作、與Worker節點通信並接受其心跳信號、作為用戶的訪問入口等等。其次,集群中的每個Worker節點相當於一個器官,運行著主節點所指派的具體作業。這些節點會被分為兩種類型,一種是接收分塊之後的作業並做映射工作。另一種是負責把前面所做的映射工作按照約定的規則做一個統計。
Task-Tracker通過運行一個簡單循環來定期地發送心跳信號(heartbeat)給JobTracker.這個心跳信號會把TaskTracker是否還在存活告知JobTracker,TaskTracker通過信號指明自己是否已經准備
好運行新的任務.一旦TaskTracker已經准備好接受任務,JobTracker就會從作業優先順序表中選定一個作業並分配下去.至於到底是執行Map任務還是Rece任務,是由TaskTracker的任務槽所決定的.默認的任務調度器在處理Rece任務之前,會優先填滿空閑的Map任務槽.因此,如果TaskTracker滿足存在至少一個空閑任務槽時,JobTracker會為它分配Map任務,否則為它選擇一個Rece任務.TaskTracker在運行任務的時候,第一步是從共享文件系統中把作業的JAR文件復制過來,從而實現任務文件的本地化.第二步是TaskTracker為任務新建一個本地文件夾並把作業文件解壓在此目錄中.第三步是由Task-Tracker新建一個TaskRunner實例來運行該任務.
Hadoop平台默認的調度方案就是JobQueueTaskScheler,這是一種按照任務到來的時間先後順序而執行的調度策略.這種方式比較簡單,JobTracker作為主控節點,僅僅是依照作業到來的先後順序而選擇將要執行的作業.當然,這有一定的缺陷,由於Hadoop平台是默認將作業運行在整個集群上的,那麼如果一個耗時非常大的作業進入執行期,將會導致其餘大量作業長時間得不到運行.這種長時間運行的優先順序別並不高的作業帶來了嚴重的作業阻塞,使得整個平台的運行效率處在較低的水平.Hadoop平台對這種FIFO(FirstINAndFirstOut)機制所給出的解決辦法是調用SetJobPriority()方法,通過設置作業的權重級別來做平衡調度.
FairScheler是一種「公平」調度器,它的目標是讓每個用戶能夠公平地共享Hadoop集群計算能力.當只有一個作業運行的時候,它會得到整個集群的資源.隨著提交到作業表中作業的增多,Hadoop平台會把集群中空閑出來的時間槽公平分配給每個需要執行的作業.這樣即便其中某些作業需要較長時間運行,平台仍然有能力讓那些短作業在合理時間內完成[3].FairScheler支持資源搶占,當一個資源池在一定時段內沒有得到公平共享時,它會終止該資源池所獲得的過多的資源,同時把這些釋放的資源讓給那些資源不足的資源池.
Hadoop平台中的CapacityScheler是由Yahoo貢獻的,在調度器上,設置了三種粒度的對象:queue,job,task.在該策略下,平台可以有多個作業隊列,每個作業隊列經提交後,都會獲得一定數量的TaskTracker資源.具體調度流程如下.
(1)選擇queue,根據資源庫的使用情況從小到大排序,直到找到一個合適的job.
(2)選擇job,在當前所選定的queue中,按照作業提交的時間先後以及作業的權重優先順序別進行排序,選擇合適的job.當然,在job選擇時還需要考慮所選作業是否超出目前現有的資源上限,以及資源池中的內存是否夠該job的task用等因素.
(3)選擇task,根據本地節點的資源使用情況來選擇合適的task.
雖然Hadoop平台自帶了幾種調度器,但是上述3種調度方案很難滿足公司復雜的應用需求.因此作為平台的個性化使用者,往往需要開發自己的調度器.Hadoop的調度器是在JobTracker中載入和調用的,因此開發一個自定義的調度器就必須搞清楚JobTracker類文件的內部機制.作為Hadoop平台的核心組件,JobTracker監控著整個集群的作業運行情況並對資源進行管理調度.每個Task-Tracker每隔3s通過heartbeat向JobTracker匯報自己管理的機器的一些基本信息,包括內存使用量、內存的剩餘量以及空閑的slot數目等等[5].一
旦JobTracker發現了空閑slot,便會調用調度器中的AssignTask方法為該TaskTracker分配task。

『叄』 如何使用python為Hadoop編寫一個簡單的MapRece程序

在這個實例中,我將會向大家介紹如何使用Python 為 Hadoop編寫一個簡單的MapRece
程序。
盡管Hadoop 框架是使用java編寫的但是我們仍然需要使用像C++、Python等語言來實現Hadoop程序。盡管Hadoop官方網站給的示常式序是使用Jython編寫並打包成Jar文件,這樣顯然造成了不便,其實,不一定非要這樣來實現,我們可以使用Python與Hadoop 關聯進行編程,看看位於/src/examples/python/WordCount.py 的例子,你將了解到我在說什麼。

我們想要做什麼?

我們將編寫一個簡單的 MapRece 程序,使用的是C-Python,而不是Jython編寫後打包成jar包的程序。
我們的這個例子將模仿 WordCount 並使用Python來實現,例子通過讀取文本文件來統計出單詞的出現次數。結果也以文本形式輸出,每一行包含一個單詞和單詞出現的次數,兩者中間使用製表符來想間隔。

先決條件

編寫這個程序之前,你學要架設好Hadoop 集群,這樣才能不會在後期工作抓瞎。如果你沒有架設好,那麼在後面有個簡明教程來教你在Ubuntu linux 上搭建(同樣適用於其他發行版linux、unix)

如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立單節點的 Hadoop 集群

如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立多節點的 Hadoop 集群

Python的MapRece代碼

使用Python編寫MapRece代碼的技巧就在於我們使用了 HadoopStreaming 來幫助我們在Map 和 Rece間傳遞數據通過STDIN (標准輸入)和STDOUT (標准輸出).我們僅僅使用Python的sys.stdin來輸入數據,使用sys.stdout輸出數據,這樣做是因為HadoopStreaming會幫我們辦好其他事。這是真的,別不相信!

Map: mapper.py

將下列的代碼保存在/home/hadoop/mapper.py中,他將從STDIN讀取數據並將單詞成行分隔開,生成一個列表映射單詞與發生次數的關系:
注意:要確保這個腳本有足夠許可權(chmod +x /home/hadoop/mapper.py)。

#!/usr/bin/env python

import sys

# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Rece step, i.e. the input for recer.py
#
# tab-delimited; the trivial word count is 1
print '%s\\t%s' % (word, 1)在這個腳本中,並不計算出單詞出現的總數,它將輸出 "<word> 1" 迅速地,盡管<word>可能會在輸入中出現多次,計算是留給後來的Rece步驟(或叫做程序)來實現。當然你可以改變下編碼風格,完全尊重你的習慣。

Rece: recer.py

將代碼存儲在/home/hadoop/recer.py 中,這個腳本的作用是從mapper.py 的STDIN中讀取結果,然後計算每個單詞出現次數的總和,並輸出結果到STDOUT。
同樣,要注意腳本許可權:chmod +x /home/hadoop/recer.py

#!/usr/bin/env python

from operator import itemgetter
import sys

# maps words to their counts
word2count = {}

# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()

# parse the input we got from mapper.py
word, count = line.split('\\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
word2count[word] = word2count.get(word, 0) + count
except ValueError:
# count was not a number, so silently
# ignore/discard this line
pass

# sort the words lexigraphically;
#
# this step is NOT required, we just do it so that our
# final output will look more like the official Hadoop
# word count examples
sorted_word2count = sorted(word2count.items(), key=itemgetter(0))

# write the results to STDOUT (standard output)
for word, count in sorted_word2count:
print '%s\\t%s'% (word, count)
測試你的代碼(cat data | map | sort | rece)

我建議你在運行MapRece job測試前嘗試手工測試你的mapper.py 和 recer.py腳本,以免得不到任何返回結果
這里有一些建議,關於如何測試你的Map和Rece的功能:
——————————————————————————————————————————————
\r\n
# very basic test
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py
foo 1
foo 1
quux 1
labs 1
foo 1
bar 1
——————————————————————————————————————————————
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/recer.py
bar 1
foo 3
labs 1
——————————————————————————————————————————————

# using one of the ebooks as example input
# (see below on where to get the ebooks)
hadoop@ubuntu:~$ cat /tmp/gutenberg/20417-8.txt | /home/hadoop/mapper.py
The 1
Project 1
Gutenberg 1
EBook 1
of 1
[...]
(you get the idea)

quux 2

quux 1

——————————————————————————————————————————————

在Hadoop平台上運行Python腳本

為了這個例子,我們將需要三種電子書:

The Outline of Science, Vol. 1 (of 4) by J. Arthur Thomson\r\n
The Notebooks of Leonardo Da Vinci\r\n
Ulysses by James Joyce
下載他們,並使用us-ascii編碼存儲 解壓後的文件,保存在臨時目錄,比如/tmp/gutenberg.

hadoop@ubuntu:~$ ls -l /tmp/gutenberg/
total 3592
-rw-r--r-- 1 hadoop hadoop 674425 2007-01-22 12:56 20417-8.txt
-rw-r--r-- 1 hadoop hadoop 1423808 2006-08-03 16:36 7ldvc10.txt
-rw-r--r-- 1 hadoop hadoop 1561677 2004-11-26 09:48 ulyss12.txt
hadoop@ubuntu:~$

復制本地數據到HDFS

在我們運行MapRece job 前,我們需要將本地的文件復制到HDFS中:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -FromLocal /tmp/gutenberg gutenberg
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls
Found 1 items
/user/hadoop/gutenberg <dir>
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg
Found 3 items
/user/hadoop/gutenberg/20417-8.txt <r 1> 674425
/user/hadoop/gutenberg/7ldvc10.txt <r 1> 1423808
/user/hadoop/gutenberg/ulyss12.txt <r 1> 1561677

執行 MapRece job

現在,一切准備就緒,我們將在運行Python MapRece job 在Hadoop集群上。像我上面所說的,我們使用的是
HadoopStreaming 幫助我們傳遞數據在Map和Rece間並通過STDIN和STDOUT,進行標准化輸入輸出。

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output
在運行中,如果你想更改Hadoop的一些設置,如增加Rece任務的數量,你可以使用「-jobconf」選項:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-jobconf mapred.rece.tasks=16 -mapper ...

一個重要的備忘是關於Hadoop does not honor mapred.map.tasks
這個任務將會讀取HDFS目錄下的gutenberg並處理他們,將結果存儲在獨立的結果文件中,並存儲在HDFS目錄下的
gutenberg-output目錄。
之前執行的結果如下:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output

additionalConfSpec_:null
null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
packageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar54543/]
[] /tmp/streamjob54544.jar tmpDir=null
[...] INFO mapred.FileInputFormat: Total input paths to process : 7
[...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local]
[...] INFO streaming.StreamJob: Running job: job_200803031615_0021
[...]
[...] INFO streaming.StreamJob: map 0% rece 0%
[...] INFO streaming.StreamJob: map 43% rece 0%
[...] INFO streaming.StreamJob: map 86% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 33%
[...] INFO streaming.StreamJob: map 100% rece 70%
[...] INFO streaming.StreamJob: map 100% rece 77%
[...] INFO streaming.StreamJob: map 100% rece 100%
[...] INFO streaming.StreamJob: Job complete: job_200803031615_0021

[...] INFO streaming.StreamJob: Output: gutenberg-output hadoop@ubuntu:/usr/local/hadoop$

正如你所見到的上面的輸出結果,Hadoop 同時還提供了一個基本的WEB介面顯示統計結果和信息。
當Hadoop集群在執行時,你可以使用瀏覽器訪問 http://localhost:50030/ ,如圖:

檢查結果是否輸出並存儲在HDFS目錄下的gutenberg-output中:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg-output
Found 1 items
/user/hadoop/gutenberg-output/part-00000 <r 1> 903193 2007-09-21 13:00
hadoop@ubuntu:/usr/local/hadoop$

可以使用dfs -cat 命令檢查文件目錄

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat gutenberg-output/part-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35" 1
"40," 1
"A 2
"AS-IS". 2
"A_ 1
"Absoluti 1
[...]
hadoop@ubuntu:/usr/local/hadoop$

注意比輸出,上面結果的(")符號不是Hadoop插入的。

轉載僅供參考,版權屬於原作者。祝你愉快,滿意請採納哦

『肆』 如何快速地編寫和運行一個屬於自己的MapRece例子程序

大數據的時代, 到處張嘴閉嘴都是Hadoop, MapRece, 不跟上時代怎麼行? 可是對一個hadoop的新手, 寫一個屬於自己的MapRece程序還是小有點難度的, 需要建立一個maven項目, 還要搞清楚各種庫的依賴, 再加上編譯運行, 基本上頭大兩圈了吧。 這也使得很多隻是想簡單了解一下MapRece的人望而卻步。
本文會教你如何用最快最簡單的方法編寫和運行一個屬於自己的MapRece程序, let's go!
首先有兩個前提:
1. 有一個已經可以運行的hadoop 集群(也可以是偽分布系統), 上面的hdfs和maprece工作正常 (這個真的是最基本的了, 不再累述, 不會的請參考 http://hadoop.apache.org/docs/current/)
2. 集群上安裝了JDK (編譯運行時會用到)
正式開始
1. 首先登入hadoop 集群裡面的一個節點, 創建一個java源文件, 偷懶起見, 基本盜用官方的word count (因為本文的目的是教會你如何快編寫和運行一個MapRece程序, 而不是如何寫好一個功能齊全的MapRece程序)
內容如下:
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.maprece.Job;
import org.apache.hadoop.maprece.Mapper;
import org.apache.hadoop.maprece.Recer;
import org.apache.hadoop.maprece.lib.input.FileInputFormat;
import org.apache.hadoop.maprece.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class myword {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

public static class IntSumRecer
extends Recer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void rece(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println('Usage: wordcount <in> <out>');
System.exit(2);
}
Job job = new Job(conf, 'word count');
job.setJarByClass(myword.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumRecer.class);
job.setRecerClass(IntSumRecer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

與官方版本相比, 主要做了兩處修改
1) 為了簡單起見,去掉了開頭的 package org.apache.hadoop.examples;
2) 將類名從 WordCount 改為 myword, 以體現是我們自己的工作成果 :)
2. 拿到hadoop 運行的class path, 主要為編譯所用
運行命令
hadoop classpath

保存打出的結果,本文用的hadoop 版本是Pivotal 公司的Pivotal hadoop, 例子:
/etc/gphd/hadoop/conf:/usr/lib/gphd/hadoop/lib/*:/usr/lib/gphd/hadoop/.//*:/usr/lib/gphd/hadoop-hdfs/./:/usr/lib/gphd/hadoop-hdfs/lib/*:/usr/lib/gphd/hadoop-hdfs/.//*:/usr/lib/gphd/hadoop-yarn/lib/*:/usr/lib/gphd/hadoop-yarn/.//*:/usr/lib/gphd/hadoop-maprece/lib/*:/usr/lib/gphd/hadoop-maprece/.//*::/etc/gphd/pxf/conf::/usr/lib/gphd/pxf/pxf-core.jar:/usr/lib/gphd/pxf/pxf-api.jar:/usr/lib/gphd/publicstage:/usr/lib/gphd/gfxd/lib/gemfirexd.jar::/usr/lib/gphd/zookeeper/zookeeper.jar:/usr/lib/gphd/hbase/lib/hbase-common.jar:/usr/lib/gphd/hbase/lib/hbase-protocol.jar:/usr/lib/gphd/hbase/lib/hbase-client.jar:/usr/lib/gphd/hbase/lib/hbase-thrift.jar:/usr/lib/gphd/hbase/lib/htrace-core-2.01.jar:/etc/gphd/hbase/conf::/usr/lib/gphd/hive/lib/hive-service.jar:/usr/lib/gphd/hive/lib/libthrift-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-metastore.jar:/usr/lib/gphd/hive/lib/libfb303-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-common.jar:/usr/lib/gphd/hive/lib/hive-exec.jar:/usr/lib/gphd/hive/lib/postgresql-jdbc.jar:/etc/gphd/hive/conf::/usr/lib/gphd/sm-plugins/*:

3. 編譯
運行命令
javac -classpath xxx ./myword.java

xxx部分就是上一步裡面取到的class path
運行完此命令後, 當前目錄下會生成一些.class 文件, 例如:
myword.class myword$IntSumRecer.class myword$TokenizerMapper.class
4. 將class文件打包成.jar文件
運行命令
jar -cvf myword.jar ./*.class

至此, 目標jar 文件成功生成
5. 准備一些文本文件, 上傳到hdfs, 以做word count的input
例子:
隨意創建一些文本文件, 保存到mapred_test 文件夾
運行命令
hadoop fs -put ./mapred_test/

確保此文件夾成功上傳到hdfs 當前用戶根目錄下
6. 運行我們的程序
運行命令
hadoop jar ./myword.jar myword mapred_test output

順利的話, 此命令會正常進行, 一個MapRece job 會開始工作, 輸出的結果會保存在 hdfs 當前用戶根目錄下的output 文件夾裡面。
至此大功告成!
如果還需要更多的功能, 我們可以修改前面的源文件以達到一個真正有用的MapRece job。
但是原理大同小異, 練手的話, 基本夠了。
一個拋磚引玉的簡單例子, 歡迎板磚。
轉載

閱讀全文

與hadoop程序員實例相關的資料

熱點內容
用編譯語言開發軟體的過程 瀏覽:863
exe怎麼知道源碼 瀏覽:385
計算機怎麼實現可編程的 瀏覽:494
軒轅傳奇如何查看玩過的伺服器 瀏覽:39
凌陽單片機選型 瀏覽:480
android手機hosts 瀏覽:97
路由器l2tp伺服器地址是什麼 瀏覽:160
做解壓手套視頻 瀏覽:620
退役命令文件 瀏覽:676
linux遞歸查找文件 瀏覽:245
哪個app上才能看到免費的名門摯愛 瀏覽:839
mysql查看錶欄位的命令 瀏覽:523
ios里的文件夾怎麼用 瀏覽:166
壓縮銀行開戶時間表 瀏覽:429
銀行人員如何解壓 瀏覽:829
newfile命令快捷鍵 瀏覽:569
阿里雲物理伺服器 瀏覽:955
靈狐視頻app哪個好 瀏覽:259
大廠退役程序員自述 瀏覽:254
linux命令watch 瀏覽:889