導航:首頁 > 編程語言 > python插值

python插值

發布時間:2022-01-24 03:24:25

python有像perl那樣的變數內插功能嗎

幾年前應該perl多一些,現在應該python的庫更豐富
單講開發效率不講維護成本的話,perl肯定更高一些,畢竟代碼量會少一些,但是如果追求代碼量少的話,可讀性會很差,維護起來就頭疼了
個人建議如果不是生物信息行業的話,果斷學python吧,perl在生信以外的領域都有點沒落了

⑵ python 線性插值

不知道有沒有,可能python數學相關的庫里會有吧

不過你寫的也不對啊,取3個值,應該是4均分。

>>>defjunfen(start,end,num):
k=(end-start)/(num+1)
returnset([start+item*kforiteminrange(1,num+1)])

⑶ 在Python程序中的插值誤差問題,怎麼解決

代碼如下所示:import numpy as npfrom matplotlib import pyplot as pltfrom scipy.interpolate import interp1dx=np.linspace(0,10*np.pi,num=20)y=np.sin(x)f1=interp1d(x,y,kind='linear')#線性插值f2=interp1d(x,y,kind='cubic')#三次樣條插值x_pred=np.linspace(0,10*np.pi,num=1000)y1=f1(x_pred)y2=f2(x_pred)plt.figure()plt.plot(x_pred,y1,'r',label='linear')plt.plot(x,f1(x),'b--','origin')plt.legend()plt.show()plt.figure()plt.plot(x_pred,y2,'b--',label='cubic')plt.legend()plt.show()

⑷ python可否用自定義函數對數據進行插值

直接定義a=True/False就行,示例代碼:
#定義布爾值類型參數a,b,值分別為True,False
a=True
b=False
print a,b
print type(a),type(b)
>>>
True False
<type 'bool'> <type 'bool'>
Python中的布爾類型:
Python的布爾類型有兩個值:True和False(注意大小寫要區分)

⑸ 怎麼用arcgis python批量插值

建議題主直接做成python腳本的工具箱(即添加 腳本工具)吧。

⑹ 是否有可進行站點數據Cressman插值的Python包

建議題主直接做成python腳本的工具箱(即添加 腳本工具)吧。

⑺ python插值的時候,怎麼獲取插值後的數據

scipy中好像並沒有進行下采樣的函數,嗯..難道是因為太過簡單了么,不過好像用一個循環就可以完成,但如果把向量看成一個時間序列,使用pandas中的date_range模塊也可以十分方便的以不同頻率進行采樣,並且,很多對文件的操作都是使用pandas操作的。

⑻ python怎樣對矩陣進行插值

首先需要創建數組才能對其進行其它操作。
我們可以通過給array函數傳遞Python的序列對象創建數組,如果傳遞的是多層嵌套的序列,將創建多維數組(下例中的變數c):
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array((5, 6, 7, 8))
>>> c = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
>>> b
array([5, 6, 7, 8])
>>> c
array([[1, 2, 3, 4],
[4, 5, 6, 7],
[7, 8, 9, 10]])
>>> c.dtype
dtype('int32')

數組的大小可以通過其shape屬性獲得:
>>> a.shape
(4,)
>>> c.shape

⑼ 怎麼使用Python中Pandas庫Resample,實現重采樣,完成線性插值

#python中的pandas庫主要有DataFrame和Series類(面向對象的的語言更願意叫類) DataFrame也就是
#數據框(主要是借鑒R裡面的data.frame),Series也就是序列 ,pandas底層是c寫的 性能很棒,有大神
#做過測試 處理億級別的數據沒問題,起性能可以跟同等配置的sas媲美
#DataFrame索引 df.loc是標簽選取操作,df.iloc是位置切片操作
print(df[['row_names','Rape']])
df['行標簽']
df.loc[行標簽,列標簽]
print(df.loc[0:2,['Rape','Murder']])
df.iloc[行位置,列位置]
df.iloc[1,1]#選取第二行,第二列的值,返回的為單個值
df.iloc[0,2],:]#選取第一行及第三行的數據
df.iloc[0:2,:]#選取第一行到第三行(不包含)的數據
df.iloc[:,1]#選取所有記錄的第一列的值,返回的為一個Series
df.iloc[1,:]#選取第一行數據,返回的為一個Series
print(df.ix[1,1]) # 更廣義的切片方式是使用.ix,它自動根據你給到的索引類型判斷是使用位置還是標簽進行切片
print(df.ix[0:2])
#DataFrame根據條件選取子集 類似於sas裡面if、where ,R裡面的subset之類的函數
df[df.Murder>13]
df[(df.Murder>10)&(df.Rape>30)]
df[df.sex==u'男']
#重命名 相當於sas裡面的rename R軟體中reshape包的中的rename
df.rename(columns={'A':'A_rename'})
df.rename(index={1:'other'})
#刪除列 相當於sas中的drop R軟體中的test['col']<-null
df.drop(['a','b'],axis=1) or del df[['a','b']]
#排序 相當於sas裡面的sort R軟體裡面的df[order(x),]
df.sort(columns='C') #行排序 y軸上
df.sort(axis=1) #各個列之間位置排序 x軸上
#數據描述 相當於sas中proc menas R軟體裡面的summary
df.describe()
#生成新的一列 跟R裡面有點類似
df['new_columns']=df['columns']
df.insert(1,'new_columns',df['B']) #效率最高
df.join(Series(df['columns'],name='new_columns'))
#列上面的追加 相當於sas中的append R裡面cbind()
df.append(df1,ignore_index=True)
pd.concat([df,df1],ignore_index=True)
#最經典的join 跟sas和R裡面的merge類似 跟sql裡面的各種join對照
merge()
#刪除重行 跟sas裡面nokey R裡面的which(!plicated(df[])類似
df.drop_plicated()
#獲取最大值 最小值的位置 有點類似矩陣裡面的方法
df.idxmin(axis=0 ) df.idxmax(axis=1) 0和1有什麼不同 自己摸索去
#讀取外部數據跟sas的proc import R裡面的read.csv等類似
read_excel() read_csv() read_hdf5() 等
與之相反的是df.to_excel() df.to_ecv()
#缺失值處理 個人覺得pandas中缺失值處理比sas和R方便多了
df.fillna(9999) #用9999填充
#鏈接資料庫 不多說 pandas裡面主要用 MySQLdb
import MySQLdb
conn=MySQLdb.connect(host="localhost",user="root",passwd="",db="mysql",use_unicode=True,charset="utf8")
read_sql() #很經典
#寫數據進資料庫
df.to_sql('hbase_visit',con, flavor="mysql", if_exists='replace', index=False)
#groupby 跟sas裡面的中的by R軟體中dplyr包中的group_by sql裡面的group by功能是一樣的 這里不多說
#求啞變數
miper=pd.get_mmies(df['key'])
df['key'].join(mpier)
#透視表 和交叉表 跟sas裡面的proc freq步類似 R裡面的aggrate和cast函數類似
pd.pivot_table()
pd.crosstab()
#聚合函數經常跟group by一起組合用
df.groupby('sex').agg({'height':['mean','sum'],'weight':['count','min']})

#數據查詢過濾

test.query("0.2
將STK_ID中的值過濾出來
stk_list = ['600809','600141','600329']中的全部記錄過濾出來,命令是:rpt[rpt['STK_ID'].isin(stk_list)].
將dataframe中,某列進行清洗的命令
刪除換行符:misc['proct_desc'] = misc['proct_desc'].str.replace('\n', '')
刪除字元串前後空格:df["Make"] = df["Make"].map(str.strip)
如果用模糊匹配的話,命令是:
rpt[rpt['STK_ID'].str.contains(r'^600[0-9]{3}$')]

對dataframe中元素,進行類型轉換

df['2nd'] = df['2nd'].str.replace(',','').astype(int) df['CTR'] = df['CTR'].str.replace('%','').astype(np.float64)

#時間變換 主要依賴於datemie 和time兩個包
http://www.2cto.com/kf/201401/276088.html
#其他的一些技巧
df2[df2['A'].map(lambda x:x.startswith('61'))] #篩選出以61開頭的數據
df2["Author"].str.replace("<.+>", "").head() #replace("<.+>", "")表示將字元串中以」<」開頭;以」>」結束的任意子串替換為空字元串
commits = df2["Name"].head(15)
print commits.unique(), len(commits.unique()) #獲的NAME的不同個數,類似於sql裡面count(distinct name)
#pandas中最核心 最經典的函數apply map applymap

⑽ 如何通過python實現三次樣條插值

spline函數可以實現三次樣條插值 x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy) 另外fnplt csapi這兩個函數也是三次樣條插值函數,具體你可以help一下!

閱讀全文

與python插值相關的資料

熱點內容
xss過濾java 瀏覽:661
dvdmark文件夾 瀏覽:207
廣聯達組價需要加密狗嗎 瀏覽:352
掛載分區命令 瀏覽:916
phpfpm的作用 瀏覽:653
填pdf表格 瀏覽:526
騰訊雲渲染伺服器 瀏覽:310
php內置異常 瀏覽:277
androidauto語音 瀏覽:55
雲繳費app兌換碼在哪裡 瀏覽:625
聖地安列斯安卓版存檔怎麼用 瀏覽:201
在哪裡可以找到舊版本的app 瀏覽:373
一個客戶端如何連接多個伺服器 瀏覽:883
簡訊加密的作用 瀏覽:108
微型高壓空氣壓縮機 瀏覽:520
微信app如何翻譯視頻 瀏覽:860
考試前聽什麼歌解壓 瀏覽:474
哪個app充值可以用銀聯二維碼 瀏覽:566
女程序員和孩子玩 瀏覽:839
程序員蘇州武漢 瀏覽:754