導航:首頁 > 編程語言 > python模型特徵分布圖

python模型特徵分布圖

發布時間:2022-07-14 18:10:34

❶ 如何用python在10分鍾內建立一個預測模型

預測模型的分解過程
我總是集中於投入有質量的時間在建模的初始階段,比如,假設生成、頭腦風暴、討論或理解可能的結果范圍。所有這些活動都有助於我解決問題,並最終讓我設計出更強大的商業解決方案。為什麼你要在前面花費這段時間,這有充分的理由:
你有足夠的時間投入並且你是無經驗的(這是有影響的)
你不帶有其它數據觀點或想法的偏見(我總是建議,在深入研究數據之前做假設生成)
在後面的階段,你會急於完成該項目而沒有能力投入有質量的時間了。
這個階段需要投入高質量時間,因此我沒有提及時間表,不過我建議你把它作為標準的做法。這有助於你建立建立更好地預測模型,在後面的階段的只需較少的迭代工作。讓我們來看看建立第一個模型的剩餘階段的時間表:
數據描述性分析——50%的時間
數據預處理(缺失值和異常值修復)——40%的時間
數據建模——4%的時間
性能預測——6%的時間
讓我們一步一步完成每個過程(每一步投入預測的時間):
階段1:描述性分析/數據探索
在我剛開始成為數據科學家的時候,數據探索占據了我大量的時間。不過,隨著時間的推移,我已經把大量的數據操作自動化了。由於數據准備占據建立第一個模型工作量的50%,自動化的好處是顯而易見的。
這是我們的第一個基準模型,我們去掉任何特徵設計。因此,描述分析所需的時間僅限於了解缺失值和直接可見的大的特徵。在我的方法體系中,你將需要2分鍾來完成這一步(假設,100000個觀測數據集)。
我的第一個模型執行的操作:
確定ID,輸入特徵和目標特徵
確定分類和數值特徵
識別缺失值所在列
階段2:數據預處理(缺失值處理)
有許多方法可以解決這個問題。對於我們的第一個模型,我們將專注於智能和快速技術來建立第一個有效模型。
為缺失值創建假標志:有用,有時缺失值本身就攜帶了大量的信息。
用均值、中位數或其它簡單方法填補缺失值:均值和中位數填補都表現良好,大多數人喜歡用均值填補但是在有偏分布的情況下我建議使用中位數。其它智能的方法與均值和中位數填補類似,使用其它相關特徵填補或建立模型。比如,在Titanic生存挑戰中,你可以使用乘客名字的稱呼,比如:「Mr.」, 「Miss.」,」Mrs.」,」Master」,來填補年齡的缺失值,這對模型性能有很好的影響。
填補缺失的分類變數:創建一個新的等級來填補分類變數,讓所有的缺失值編碼為一個單一值比如,「New_Cat」,或者,你可以看看頻率組合,使用高頻率的分類變數來填補缺失值。
由於數據處理方法如此簡單,你可以只需要3到4分鍾來處理數據。
階段3:數據建模
根據不同的業務問題,我推薦使用GBM或RandomForest技術的任意一種。這兩個技術可以極其有效地創建基準解決方案。我已經看到數據科學家通常把這兩個方法作為他們的第一個模型同時也作為最後一個模型。這最多用去4到5分鍾。
階段4:性能預測
有各種各樣的方法可以驗證你的模型性能,我建議你將訓練數據集劃分為訓練集和驗證集(理想的比例是70:30)並且在70%的訓練數據集上建模。現在,使用30%的驗證數據集進行交叉驗證並使用評價指標進行性能評估。最後需要1到2分鍾執行和記錄結果。
本文的目的不是贏得比賽,而是建立我們自己的基準。讓我們用python代碼來執行上面的步驟,建立你的第一個有較高影響的模型。
讓我們開始付諸行動
首先我假設你已經做了所有的假設生成並且你擅長使用python的基本數據科學操作。我用一個數據科學挑戰的例子來說明。讓我們看一下結構:
步驟1:導入所需的庫,讀取測試和訓練數據集。
#導入pandas、numpy包,導入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函數
import pandas as pd
import numpy as np
fromsklearn.preprocessing import LabelEncoder
import random
fromsklearn.ensemble import RandomForestClassifier
from sklearn.ensembleimport GradientBoostingClassifier
#讀取訓練、測試數據集
train=pd.read_csv('C:/Users/AnalyticsVidhya/Desktop/challenge/Train.csv')
test=pd.read_csv('C:/Users/AnalyticsVidhya/Desktop/challenge/Test.csv')
#創建訓練、測試數據集標志
train='Train'
test='Test'
fullData =pd.concat(,axis=0) #聯合訓練、測試數據集
步驟2:該框架的第二步並不需要用到python,繼續下一步。
步驟3:查看數據集的列名或概要
fullData.columns # 顯示所有的列名稱
fullData.head(10) #顯示數據框的前10條記錄
fullData.describe() #你可以使用describe()函數查看數值域的概要
步驟4:確定a)ID變數 b)目標變數 c)分類變數 d)數值變數 e)其他變數。
ID_col =
target_col =
cat_cols =
num_cols= list(set(list(fullData.columns))-set(cat_cols)-set(ID_col)-set(target_col)-set(data_col))
other_col= #為訓練、測試數據集設置標識符
步驟5:識別缺失值變數並創建標志
fullData.isnull().any()#返回True或False,True意味著有缺失值而False相反
num_cat_cols = num_cols+cat_cols # 組合數值變數和分類變數
#為有缺失值的變數創建一個新的變數
# 對缺失值標志為1,否則為0
for var in num_cat_cols:
if fullData.isnull().any()=True:
fullData=fullData.isnull()*1
步驟6:填補缺失值
#用均值填補數值缺失值
fullData = fullData.fillna(fullData.mean(),inplace=True)
#用-9999填補分類變數缺失值
fullData = fullData.fillna(value = -9999)
步驟7:創建分類變數的標簽編碼器,將數據集分割成訓練和測試集,進一步,將訓練數據集分割成訓練集和測試集。
#創建分類特徵的標簽編碼器
for var in cat_cols:
number = LabelEncoder()
fullData = number.fit_transform(fullData.astype('str'))
#目標變數也是分類變數,所以也用標簽編碼器轉換
fullData = number.fit_transform(fullData.astype('str'))
train=fullData='Train']
test=fullData='Test']
train = np.random.uniform(0, 1, len(train)) <= .75
Train, Validate = train=True], train=False]
步驟8:將填補和虛假(缺失值標志)變數傳遞到模型中,我使用隨機森林來預測類。
features=list(set(list(fullData.columns))-set(ID_col)-set(target_col)-set(other_col))
x_train = Train.values
y_train = Train.values
x_validate = Validate.values
y_validate = Validate.values
x_test=test.values
random.seed(100)
rf = RandomForestClassifier(n_estimators=1000)
rf.fit(x_train, y_train)
步驟9:檢查性能做出預測
status = rf.predict_proba(x_validate)
fpr, tpr, _ = roc_curve(y_validate, status)
roc_auc = auc(fpr, tpr)
print roc_auc
final_status = rf.predict_proba(x_test)
test=final_status
test.to_csv('C:/Users/Analytics Vidhya/Desktop/model_output.csv',columns=)
現在可以提交了!

❷ 用python怎麼做出概率分布圖啊,新手菜鳥,求高手指點

如果沒有編程經驗,建議不要看太深入的書籍,先從簡單的print 學起,然後寫一個簡單的函數,函數可以只輸出些簡單字元串,然後了解一下函數,比如函數的參數形式,以及函數與method的區別。

然後使用一些簡單的類型,比如tuple,dict 等,一個一個了解,了解一個,慢慢的練習。如果有哪些不懂,可以網路一下,多網路(谷歌)。

看哪些書都無所謂,剛開始沒有什麼好壞之分,只要你看得進,看得懂,就看那一本,別糾結於看哪本書。

❸ 學python就業都有哪些方向

就業方向一 web前後端開發(python開發工程師)

熟悉HTML/JavaScript/CSS,掌握React.js等前端框架開發,熟悉頁面架構和布局,熟悉MySQL、Redis等,具備資料庫應用、設計能力,熟練掌握Django/Flask等Web後端開發框架,熟練掌握網路通訊協議和多線程、多進程並發技術;

了解架構設計、實現原理和安全防護加固,掌握高並發web網站、緩存加速技術,有1-2個完整項目經驗。已經具備Python web中高級級開發工程師能力,市面薪資可達12K-25K。

人工智慧這個方向不用說了,人工智慧是我們未來的國家戰略,在新華學員中,相關人工智慧就業的同學,薪資一般都超過16000元以上,並且全部進入了大型企業,未來發展可期。

❹ python pandas 怎麼生成正態分布的圖

高斯分布是從負無窮到正無窮的.能限制住就不是高斯分布了.或者你做個近似的,函數生成的數值如果不在[0,1],就重新隨機一次

❺ 怎麼用python畫數據分布直方圖

計算頻數:
給定一個序列t:
hist = {}
for x in t:
hist[x] = hist.get(x,0)+1
得到的結果是一個將值映射到其頻數的字典。將其除以n即可把頻數轉換成頻率,這稱為歸一化:
n = float(len(t))
pmf = {}
for x, freq in hist.items():
pmf[x] = freq/n

繪制直方圖:
Vals, freqs = hist.Render()
rectangles = pyplot.bar(vals, freqs)
pyplot.show()

繪制概率質量函數:
採用柱狀圖,可以用pyplot.bar或myplot.Hist。如果Pmf中的值不多,柱狀圖就比較合適
採用折線圖,可以用pyplot.plot或者myplot.Pmf。如果Pmf中的值較多,且比較平滑,折線圖就比較合適。

*百分比差異圖
直觀顯示兩組數據的分布差異,詳見教材。

❻ 怎樣用python的matplotlib模塊畫累積分布圖

下面的程序繪制隨機變數X的累積分布函數和數組p的累加結果
>>> pl.plot(t, X.cdf(t))
>>> pl.plot(t2, np.add.accumulate(p)*(t2[1]-t2[0]))

❼ 如何將已知數據用python寫成正態分布並且畫圖

importnumpyasnp
importmatplotlib.pyplotasplt

y=[2,5,7,10,16,23,20,16,9,6,6,3,1,1]
x=[59,60,61,62,63,64,65,66,67,68,69,70,71,72]
fig,ax=plt.subplots()
ax.bar(x,y,0.3,alpha=0.5,color='b',label='abc')
plt.axis([55,75,0,25])
ax.set_xlabel('XXX')
ax.set_ylabel('YYY')
ax.set_title('ABC')
ax.legend()
fig.tight_layout()
plt.show()

❽ 如何使用python數據特徵分析與可視化

如何評價利用python製作數據採集,計算,可視化界面
1、為什麼用Python做數據分析
首先因為Python可以輕松地集成C、C++、Fortran代碼,一些底層用C寫的演算法封裝在python包里後性能非常高效。並且Python與Ruby都有大量的Web框架,因此用於網站的建設,另一方面個人覺得因為Python作為解釋性語言相對編譯型語言更為簡單,可以通過簡單的腳本處理大量的數據。而組織內部統一使用的語言將大大提高工作效率。
2、為什麼用R做數據分析
R的優勢在於有包羅萬象的統計函數可以調用,特別是在時間序列分析方面(主要用在金融分析與趨勢預測)無論是經典還是前沿的方法都有相應的包直接使用;相比python在這方面貧乏不少。另外R語言具有強大的可視化功能,一個散點圖箱線圖可以用一條程序搞定,相比Excel更加簡單。
在使用環境方面,SAS在企業、政府及軍事機構使用較多,因其權威認證;SPSS、R大多用於科研機構,企業級應用方面已有大量的商業化R軟體,同時可結合(具體怎麼結合,尚未搞明白)Hadoop進行數據挖掘。

❾ Python怎麼畫一個圓柱體的溫度分布圖,求指點求詳細代碼

defellipse(a,b):
return[[a*math.cos(i*math.pi/180),b*math.sin(i*math.pi/180)]foriinrange(0,360)]

if__name__=="__main__":
l=ellipse(150,80)
turtle.up()
turtle.setpos(150,80)
turtle.down()

for(x,y)inl:
turtle.setpos(x,y)
turtle.setpos(x,y+100)
for(x,y)inl:
turtle.setpos(x,y+100)

turtle.up()
turtle.setpos(-150,90)
turtle.down()

turtle.setpos(x-300,y+100)
turtle.setpos(x-300,y)
turtle.done()

❿ python如何繪制預測模型校準圖

python繪制預測模型校準圖可以使用校準曲線,因為預測一個模型校準的最簡單的方法是通過一個稱為「校準曲線」的圖(也稱為「可靠性圖」,reliability diagram)。

這個方法主要是將觀察到的結果通過概率劃分為幾類(bin)。因此,屬於同一類的觀測值具有相近的概率。

對於每個類,校準曲線將預測這個類的平均值,然後將預測概率的平均值與理論平均值(即觀察到的目標變數的平均值)進行比較。

你只需要確定類的數量和以下兩者之間的分類策略即可:

1、「uniform」,一個0-1的間隔被分為n_bins個類,它們都具有相同的寬度。

2、「quantile」,類的邊緣被定義,從而使得每個類都具有相同數量的觀測值。

假設你的模型具有良好的精度,則校準曲線將單調增加。但這並不意味著模型已被正確校準。實際上,只有在校準曲線非常接近等分線時(即下圖中的灰色虛線),您的模型才能得到很好的校準,因為這將意味著預測概率基本上接近理論概率。

python繪制預測模型中如何解決校準錯誤:

假設你已經訓練了一個分類器,該分類器會產生准確但未經校準的概率。概率校準的思想是建立第二個模型(稱為校準器),校準器模型能夠將你訓練的分類器「校準」為實際概率。

因此,校準包括了將一個一維矢量(未校準概率)轉換為另一個一維矢量(已校準概率)的功能。

兩種常被用作校準器的方法:

1、保序回歸:一種非參數演算法,這種非參數演算法將非遞減的自由格式行擬合到數據中。行不會減少這一事實是很重要的,因為它遵從原始排序。

2、邏輯回歸:現在有三種選擇來預測概率:普通隨機森林、隨機森林 + 保序回歸、隨機森林 + 邏輯回歸。

閱讀全文

與python模型特徵分布圖相關的資料

熱點內容
解壓的玩具教程可愛版 瀏覽:364
哪個求職app比較靠譜 瀏覽:886
java的讀法 瀏覽:59
nod32區域網伺服器地址 瀏覽:1002
數碼科技解壓 瀏覽:235
新網的雲伺服器管理界面復雜嗎 瀏覽:367
無人聲解壓強迫症視頻 瀏覽:571
計算機編譯運行 瀏覽:639
單片機嵌套 瀏覽:988
python字元串中符號 瀏覽:787
python正則表達式貪婪模式 瀏覽:648
愛國精神指的是什麼app 瀏覽:408
壽司解壓系列全集視頻 瀏覽:913
物體三維重建演算法 瀏覽:984
fuli直播app哪個好 瀏覽:918
租辦公室用什麼app 瀏覽:106
醫師定期考核刷題app哪個好 瀏覽:338
導出dmp文件命令 瀏覽:288
手機百度網盤怎麼解壓密碼文件 瀏覽:585
索引重新編譯 瀏覽:606