㈠ python怎麼使用cython
1. Cython是什麼?
它是一個用來快速生成Python擴展模塊(extention mole)的工具
語法是Python和c的混血
Cython作為一個Python的編譯器,在科學計算方面很流行,用於提高Python的速度,通過OpenMPI庫還可以進行吧並行計算。
2. Cython安裝(Windows)
我的環境是win7 x64, python27, vs2010
安裝的基礎是有一個c編譯器(這里以vs2010為例)
從http://cython.org下載安裝包,解壓到一目錄,進入該目錄,在cmd命令行中執行
python setup.py install
註:執行過程可能遇到問題:Windows下pip安裝包報錯:Microsoft Visual C++ 9.0 is required Unable to find vcvarsall.bat
解決方案:下載Microsoft Visual C++ Compiler for Python 2.7,點擊直接安裝即可。
3. 例子
例3.1:入門
創建hello.pyx,內容如下
def say_hello():
print "Hello World!"
創建setup.py,內容如下
from distutils.core import setup
from Cython.Build import cythonize
setup(name = 'Hello world app',
ext_moles = cythonize("hello.pyx"))
編譯Cython代碼
step1: 把.pyx文件被Cython便以為.c文件
step2: 把.c文件編譯為可導入的使用模塊.so(Windows下為.pyd)文件
1
2
python setup.py build
python setup.py install
註:可能出現問題:Unable to find vcvarsall.bat
原因:Python 2.7 會搜索 Visual Studio 2008.如果你電腦上沒有這個版本的話就會報錯。
如果裝的是vs2010,那麼在cmd命令行中執行
1
SET VS90COMNTOOLS=%VS100COMNTOOLS%
如果裝的是vs2010,那麼在cmd命令行中執行
1
SET VS90COMNTOOLS=%VS110COMNTOOLS%
執行
1
2
3
>>> import hello
>>> hello.say_hello()
Hello World!例3.2 通過靜態類型提高速度
在Cython中可以通過標記靜態類型來提高速度,凡是標記為靜態類型的部分都會將動態語言類型變為簡單的c代碼,從而提速。
但是如果濫用靜態類型,會降低可讀性,甚至因類型設置不當導致錯誤類型檢查造成速度降低。
例3.2.1 靜態類型變數
Python原生態代碼
compute.pyx
def f(x):
return x ** 2 - x
def integrate_f(a, b, N):
s = 0
dx = (b - a) / N
for i in range(N):
x += f(a + i * dx)
return s * dx
setup.py
from distutils.core import setup
from Cython.Build import cythonize
setup(
name = 'Hello world app',
ext_moles = cythonize("compute.pyx"),
)
test.py
import compute
import time
starttime = time.clock()
compute.integrate_f(3.2, 6.9, 1000000)
endtime = time.clock()
print "read: %f s" %(endtime - starttime)
執行
1
2
3
python setup.py build
python setup.py install
python test.py
結果
1
read: 0.332332 s
使用靜態變數替換後的代碼
compute2.pyx
def f(double x):
return x ** 2 - x
def integrate_f(double a, double b, int N):
cdef int i
cdef double s, dx
s = 0
dx = (b - a) / N
for i in range(N):
s += f(a + i * dx)
return s * d
setup2.py
from distutils.core import setup
from Cython.Build import cythonize
setup(
name = 'Hello world app',
ext_moles = cythonize("compute2.pyx"),
)
test2.py
import compute2
import time
starttime = time.clock()
compute2.integrate_f(3.2, 6.9, 1000000)
endtime = time.clock()
print "read: %f s" %(endtime - starttime)
執行
1
2
3
python setup.py build
python setup.py install
python test.py
結果
1
read: 0.109200s
結論
該測試用例,使用靜態類型速度是不使用靜態類型的3倍。
例3.2.2 靜態類型函數
把compute2.pyx中的函數變為
cdef double f(double x):
return x ** 2 - x
def integrate_f(double a, double b, int N):
cdef int i
cdef double s, dx
s = 0
dx = (b - a) / N
for i in range(N):
s += f(a + i * dx)
return s * dx
結果
1
read: 0.084859 s
結論:比例子3.2.1速度又快了
例3.3 調用C函數
cdef extern from "math.h":
double sin(double)
double cos(double)
cpdef double Sin(double x):
return sin(x)
cpdef double Cos(double x):
return cos(x)
cpdef: 對於Python可使用的函數使用(為了使得在以後的Python程序中調用Sin,Cos函數,用cpdef,而不用cdef)
cdef: 對於C可使用的函數使用
請注意,上面的代碼聲明了 math.h 里的函數,提供給 Cython 使用。C編譯器在編譯時將會看到 math.h 的聲明,但 Cython 不會去分析 math.h 和單獨的定義。
㈡ python中怎麼讀取文件內容
用open命令打開你要讀取的文件,返回一個文件對象
然後在這個對象上執行read,readlines,readline等命令讀取文件
或使用for循環自動按行讀取文件
㈢ 如何系統地自學 Python
是否非常想學好 Python,一方面被瑣事糾纏,一直沒能動手,另一方面,擔心學習成本太高,心裡默默敲著退堂鼓?
幸運的是,Python 是一門初學者友好的編程語言,想要完全掌握它,你不必花上太多的時間和精力。
Python 的設計哲學之一就是簡單易學,體現在兩個方面:
語法簡潔明了:相對 Ruby 和 Perl,它的語法特性不多不少,大多數都很簡單直接,不玩兒玄學。
切入點很多:Python 可以讓你可以做很多事情,科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,總有一個是你感興趣並且願意投入時間的。
廢話不多說,學會一門語言的捷徑只有一個: Getting Started
¶ 起步階段
任何一種編程語言都包含兩個部分:硬知識和軟知識,起步階段的主要任務是掌握硬知識。
硬知識
「硬知識」指的是編程語言的語法、演算法和數據結構、編程範式等,例如:變數和類型、循環語句、分支、函數、類。這部分知識也是具有普適性的,看上去是掌握了一種語法,實際是建立了一種思維。例如:讓一個 Java 程序員去學習 Python,他可以很快的將 Java 中的學到的面向對象的知識 map 到 Python 中來,因此能夠快速掌握 Python 中面向對象的特性。
如果你是剛開始學習編程的新手,一本可靠的語法書是非常重要的。它看上去可能非常枯燥乏味,但對於建立穩固的編程思維是必不可少。
下面列出了一些適合初學者入門的教學材料:
廖雪峰的 Python 教程 Python 中文教程的翹楚,專為剛剛步入程序世界的小白打造。
笨方法學 Python 這本書在講解 Python 的語法成分時,還附帶大量可實踐的例子,非常適合快速起步。
The Hitchhiker』s Guide to Python! 這本指南著重於 Python 的最佳實踐,不管你是 Python 專家還是新手,都能獲得極大的幫助。
Python 的哲學:
學習也是一樣,雖然推薦了多種學習資料,但實際學習的時候,最好只選擇其中的一個,堅持看完。
必要的時候,可能需要閱讀講解數據結構和演算法的書,這些知識對於理解和使用 Python 中的對象模型有著很大的幫助。
軟知識
「軟知識」則是特定語言環境下的語法技巧、類庫的使用、IDE的選擇等等。這一部分,即使完全不了解不會使用,也不會妨礙你去編程,只不過寫出的程序,看上去顯得「傻」了些。
對這些知識的學習,取決於你嘗試解決的問題的領域和深度。對初學者而言,起步階段極易走火,或者在選擇 Python 版本時徘徊不決,一會兒看 2.7 一會兒又轉到 3.0,或者徜徉在類庫的大海中無法自拔,Scrapy,Numpy,Django 什麼都要試試,或者參與編輯器聖戰、大括弧縮進探究、操作系統辯論賽等無意義活動,或者整天跪舔語法糖,老想著怎麼一行代碼把所有的事情做完,或者去構想聖潔的性能安全通用性健壯性全部滿分的解決方案。
很多「大牛」都會告誡初學者,用這個用那個,少走彎路,這樣反而把初學者推向了真正的彎路。
還不如告訴初學者,學習本來就是個需要你去走彎路出 Bug,只能腳踏實地,沒有奇跡只有狗屎的過程。
選擇一個方向先走下去,哪怕臟丑差,走不動了再看看有沒有更好的解決途徑。
自己走了彎路,你才知道這么做的好處,才能理解為什麼人們可以手寫狀態機去匹配卻偏要發明正則表達式,為什麼面向過程可以解決卻偏要面向對象,為什麼我可以操縱每一根指針卻偏要自動管理內存,為什麼我可以嵌套回調卻偏要用 Promise...
更重要的是,你會明白,高層次的解決方法都是對低層次的封裝,並不是任何情況下都是最有效最合適的。
技術涌進就像波浪一樣,那些陳舊的封存已久的技術,消退了遲早還會涌回的。就像現在移動端應用、手游和 HTML5 的火熱,某些方面不正在重演過去 PC 的那些歷史么?
因此,不要擔心自己走錯路誤了終身,堅持並保持進步才是正道。
起步階段的核心任務是掌握硬知識,軟知識做適當了解,有了穩固的根,粗壯的枝幹,才能長出濃密的葉子,結出甜美的果實。
¶ 發展階段
完成了基礎知識的學習,必定會感到一陣空虛,懷疑這些語法知識是不是真的有用。
沒錯,你的懷疑是非常正確的。要讓 Python 發揮出它的價值,當然不能停留在語法層面。
發展階段的核心任務,就是「跳出 Python,擁抱世界」。
在你面前會有多個分支:科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,這些都不是僅僅知道 Python 語法就能解決的問題。
拿爬蟲舉例,如果你對計算機網路,HTTP 協議,HTML,文本編碼,JSON 一無所知,你能做好這部分的工作么?而你在起步階段的基礎知識也同樣重要,如果你連循環遞歸怎麼寫都還要查文檔,連 BFS 都不知道怎麼實現,這就像工匠做石凳每次起錘都要思考錘子怎麼使用一樣,非常低效。
在這個階段,不可避免要接觸大量類庫,閱讀大量書籍的。
類庫方面
「Awesome Python 項目」:vinta/awesome-python · GitHub
這里列出了你在嘗試解決各種實際問題時,Python 社區已有的工具型類庫,如下圖所示:
vinta/awesome-python
你可以按照實際需求,尋找你需要的類庫。
至於相關類庫如何使用,必須掌握的技能便是閱讀文檔。由於開源社區大多數文檔都是英文寫成的,所以,英語不好的同學,需要惡補下。
書籍方面
這里我只列出一些我覺得比較有一些幫助的書籍,詳細的請看豆瓣的書評:
科學和數據分析:
❖「集體智慧編程」:集體智慧編程 (豆瓣)
❖「數學之美」:數學之美 (豆瓣)
❖「統計學習方法」:統計學習方法 (豆瓣)
❖「Pattern Recognition And Machine Learning」:Pattern Recognition And Machine Learning (豆瓣)
❖「數據科學實戰」:數據科學實戰 (豆瓣)
❖「數據檢索導論」:信息檢索導論 (豆瓣)
爬蟲:
❖「HTTP 權威指南」:HTTP權威指南 (豆瓣)
Web 網站:
❖「HTML & CSS 設計與構建網站」:HTML & CSS設計與構建網站 (豆瓣)
...
列到這里已經不需要繼續了。
聰明的你一定會發現上面的大部分書籍,並不是講 Python 的書,而更多的是專業知識。
事實上,這里所謂「跳出 Python,擁抱世界」,其實是發現 Python 和專業知識相結合,能夠解決很多實際問題。這個階段能走到什麼程度,更多的取決於自己的專業知識。
¶ 深入階段
這個階段的你,對 Python 幾乎了如指掌,那麼你一定知道 Python 是用 C 語言實現的。
可是 Python 對象的「動態特徵」是怎麼用相對底層,連自動內存管理都沒有的C語言實現的呢?這時候就不能停留在表面了,勇敢的拆開 Python 的黑盒子,深入到語言的內部,去看它的歷史,讀它的源碼,才能真正理解它的設計思路。
這里推薦一本書:
「Python 源碼剖析」:Python源碼剖析 (豆瓣)
這本書把 Python 源碼中最核心的部分,給出了詳細的闡釋,不過閱讀此書需要對 C 語言內存模型和指針有著很好的理解。
另外,Python 本身是一門雜糅多種範式的動態語言,也就是說,相對於 C 的過程式、 Haskell 等的函數式、Java 基於類的面向對象而言,它都不夠純粹。換而言之,編程語言的「道學」,在 Python 中只能有限的體悟。學習某種編程範式時,從那些面向這種範式更加純粹的語言出發,才能有更深刻的理解,也能了解到 Python 語言的根源。
這里推薦一門公開課
「編程範式」:斯坦福大學公開課:編程範式
講師高屋建瓴,從各種編程範式的代表語言出發,給出了每種編程範式最核心的思想。
值得一提的是,這門課程對C語言有非常深入的講解,例如C語言的范型和內存管理。這些知識,對閱讀 Python 源碼也有大有幫助。
Python 的許多最佳實踐都隱藏在那些眾所周知的框架和類庫中,例如 Django、Tornado 等等。在它們的源代碼中淘金,也是個不錯的選擇。
¶ 最後的話
每個人學編程的道路都是不一樣的,其實大都殊途同歸,沒有迷路的人只有不能堅持的人!
希望想學 Python 想學編程的同學,不要猶豫了,看完這篇文章,
Just Getting Started !!!
㈣ 如何使用用Cython通過Python列表到C函數
的#include<&stdio.h中GT;
#包括「test.h」
無效流行(無效){
一個[0] =將0x55;
一個[1] = 0x66;
一個[2] = 0x77;
A [3] ='\\ 0';
}
無效的putAll(INT N,焦炭C []){
的memcpy(A,C,N);
}
字元* GETALL(無效){
返回&放大器;一個[0];
}
㈤ cython與python的不同有哪些
Cython是Python的一個超集,結合了Python的易用性和原生代碼的速度,可以編譯成C語言,產生的性能提升可以從幾個百分點到幾個數量級,具體取決於手頭的任務。
使用Cython,你可以避開Python的許多原生限制,或者完全超越Python,而無需放棄Python的簡便性和便捷性。
Python代碼可以直接調用C模塊。這些C模塊可以是通用的C庫或專門為Python工作的庫。Cython生成第二種類型的模塊:與Python內部對話的C庫,可以與現有的Python代碼綁定在一起。
Cython代碼在設計上看起來很像Python代碼。如果你給Cython編譯器提供了一個Python程序,它將會按原樣接受它,但是Cython的原生加速器都不會起作用。但是如果你用Cython的特殊語法來修飾Python代碼,那麼Cython就可以用快速的C代替慢的Python對象。
請注意,Cython的方法是漸進的。這意味著開發人員可以從現有的Python應用程序開始,通過對代碼立刻進行更改來加快速度,而不是從頭開始重寫整個應用程序。
這種方法通常與軟體性能問題的性質相吻合。在大多數程序中,絕大多數CPU密集型代碼都集中在一些熱點上,也就是帕累托原則的一個版本,也被稱為「80/20」規則。因此,Python應用程序中的大部分代碼不需要進行性能優化,只需要幾個關鍵部分。你可以逐漸將這些熱點轉換為Cython,從而獲得你最需要的性能提升。程序的其餘部分可以保留在Python中,以方便開發人員。
相關推薦:《Python入門教程》
Cython優勢
除了能夠加速已經編寫的代碼之外,Cython還具有其他幾個優點:
使用外部C庫可以更快
像NumPy這樣的Python軟體包可以在Python界面中打包C庫,使它們易於使用。但是,這些包在Python和C之間來回切換會減慢速度。Cython可以讓你直接與底層庫進行通信,而不需要Python(也支持C ++庫)。
可以同時使用C和Python內存管理
如果你使用Python對象,它們就像在普通的Python中一樣被內存管理和垃圾收集。但是如果你想創建和管理自己的C級結構,並使用malloc/free來處理它們,你可以這樣做,只記得自己清理一下。
可以根據需要選擇安全性或速度
Cython通過decorator 和編譯器指令(例如@boundscheck(False))自動執行對C中彈出的常見問題的運行時檢查,例如對數組的超出邊界訪問。因此,由Cython生成的C代碼默認比手動C代碼安全得多。
如果確信在運行時不需要這些檢查,則可以在整個模塊上或僅在選擇功能上禁用它們以獲得額外的編譯速度。
Cython還允許本地訪問使用「緩沖協議」的Python結構,以直接訪問存儲在內存中的數據(無需中間復制)。Cython的「記憶視圖」可以高速地在這些結構上進行工作,並且具有適合任務的安全級別。
Cython C代碼可以從釋放GIL中受益
Python的全局解釋器鎖(Global Interpreter Lock,GIL)同步解釋器中的線程,保護對Python對象的訪問並管理資源的爭用。但GIL被廣泛批評為Python性能的絆腳石,特別是在多核系統上。
如果有一段代碼不會引用Python對象並執行長時間運行,那麼可以使用nogil:指令將其標記為允許它在沒有GIL的情況下運行。這使得Python中間人可以做其他事情,並允許Cython代碼使用多個內核(附加工作)。
Cython可以使用Python類型的提示語法
Python有一個類型提示語法,主要由linters和代碼檢查器使用,而不是CPython解釋器。 Cython有它自己的代碼裝飾的自定義語法,但是最近修改了Cython,你可以使用Python類型提示語法為Cython提供類型提示。
Cython限制
請記住,Cython不是一個魔術棒。它不會自動將每一個poky Python代碼變成極速的C代碼。為了充分利用Cython,你必須明智地使用它,並理解它的局限性:
常規Python代碼的加速很少
當Cython遇到Python代碼時,它不能完全翻譯成C語言,它將這些代碼轉換成一系列對Python內部的C調用。這相當於將Python的解釋器從執行循環中提取出來,這使得代碼默認加速了15%到20%。請注意,這是最好的情況。在某些情況下,可能看不到性能改善,甚至性能下降。
原生Python數據結構有一點加速
Python提供了大量的數據結構 - 字元串,列表,元組,字典等等。它們對於開發者來說非常方便,而且他們自帶了自動內存管理功能,但是他們比純C慢。
Cython讓你繼續使用所有的Python數據結構,盡管沒有太多的加速。這又是因為Cython只是在Python運行時調用創建和操作這些對象的C API。因此,Python數據結構的行為與Cython優化的Python代碼大致相同:有時會得到一個提升,但只有一點。
Cython代碼運行速度最快時,「純C」
如果你在C中有一個標有cdef關鍵字的函數,那麼它的所有變數和內聯函數調用都是純C的,所以它的運行速度可以和C一樣快。 但是,如果該函數引用任何Python原生代碼(如Python數據結構或對內部Python API的調用),則該調用將成為性能瓶頸。
幸運的是,Cython提供了一種方法來發現這些瓶頸:一個源代碼報告,一目瞭然地顯示您的Cython應用程序的哪些部分是純C以及哪些部分與Python交互。 對應用程序進行了更好的優化,就會減少與Python的交互。
為Cython應用程序生成的源代碼報告。 白色區域純C;黃色區域顯示與Python內部的交互。一個精心優化的Cython程序將盡可能的黃色。 展開的最後一行顯示了解釋其相應Cython代碼的C代碼。
Cython NumPy
Cython改進了基於C的第三方數字運算庫(如NumPy)的使用。由於Cython代碼編譯為C,它可以直接與這些庫進行交互,並將Python的瓶頸帶出循環。
但是NumPy特別適用於Cython。 Cython對NumPy中的特定結構具有本地支持,並提供對NumPy數組的快速訪問。在傳統的Python腳本中使用的熟悉的NumPy語法可以在Cython中使用。
但是,如果要創建Cython和NumPy之間最接近的綁定,則需要使用Cython的自定義語法進一步修飾代碼。例如,cimport語句允許Cython代碼在編譯時在庫中查看C級構造,以實現最快的綁定。
由於NumPy被廣泛使用,Cython支持NumPy「開箱即用」。如果你安裝了NumPy,你可以在你的代碼中聲明cimport numpy,然後添加進一步的裝飾來使用暴露的函數。
Cython分析和性能
可以通過分析代碼並親眼目睹瓶頸在哪裡獲得最佳性能。Cython為Python的cProfile模塊提供鉤子,因此可以使用Python自己的分析工具來查看Cython代碼的執行情況。無需在工具組之間切換;可以繼續所熟悉和喜愛的Python世界中工作。
它有助於記住所有情況下,Cython不是魔術,仍然適用明智的現實世界的表現實踐。在Python和Cython之間來回穿梭越少,你的應用運行得越快。
例如,如果你有一個你想要在Cython中處理的對象的集合,那麼不要在Python中迭代它,並且在每一步調用一個Cython函數。將整個集合傳遞給你的Cython模塊並在那裡迭代。這種技術經常在管理數據的庫中使用,因此這是在自己的代碼中模擬的好模型。
我們使用Python是因為它為程序員提供了便利,並且能夠快速開發。有時程序員的工作效率是以犧牲性能為代價的。使用Cython,只需要一點點額外的努力就可以給你兩全其美的好處。
㈥ cython 需要 c 基礎嗎
還可以使用Cython來實現混編
1 Cython,用Python setup.py install進行安裝
2 一個實例
① 創建helloworld目錄創建helloworld.pyx,內容如下:cdef extern from"stdio.h": extern int printf(const char *format, ) def SayHello(): printf("hello,world\n")
② 編譯,最方便的是利用python的Distutils了,
helloworld目錄下創建Setup.py,內容如下:from distutils.core import setupfrom distutils.extension import Extensionfrom Cython.Build import cythonize setup( name = 'helloworld', ext_moles=cythonize([ Extension("helloworld", ["helloworld.pyx"]), ]),) 編譯:python Setup.py build安裝:python Setup.py install安裝後,會將在build/lib.???目錄下生成的helloworld.pyd拷貝到Lib/site-packages註: 有時我們只是希望測試一下,並不希望安裝,這時可以把build/lib.???目錄下的helloworld.pyd拷貝到當前目錄 或者在importhelloworld前執行腳本:import sys;sys.path.append(pathof helloworld.pyd) ③ 測試:>>>import helloworld >>>helloworld.SayHello() hello,world
㈦ 如何使用cython編譯擴展
先是安裝Cython。由於我只有Windows,所以就只介紹這個平台。
英文的說明可以看《InstallingOnWindows》,共有2步:
一、安裝MinGW。現在SF已不提供完整安裝版了,只能下載在線安裝版。由於Cython也支持C++,所以我也勾選了g++編譯器。
裝好後把MinGW目錄/bin加入PATH環境變數,並保證gcc --version可以正確執行。
接著去Python目錄\Lib\distutils下添加一個distutils.cfg文件,內容如下:
[build]
compiler = mingw32
實際上這最後一步也可不做,但每次編譯都需要加一個-c參數來指定編譯器。
二、安裝Cython。
我是直接下載exe版本的,直接運行即可。Python 2.4可能還要做些額外處理,我沒有這個版本,沒法測試。
接著就可以來測試了,先來寫個hello world。
hw.py:
def hi():
print "Hello World"
setup.py:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
setup(
cmdclass = {'build_ext': build_ext},
ext_moles = [Extension("hw", ["hw.py"])]
)
然後運行這段代碼進行編譯:
setup.py build_ext --inplace
這就生成了很多文件,其中hw.pyd就是生成的C擴展了。
接著測試一下:
>>> from hw import hi
>>> hi()
Hello World
然後來測試下性能:
csigma.py和pysigma.py:
def sigma(n):
a = 0
for i in xrange(n):
a += i
return a
測試腳本:
from timeit import Timer
print Timer('sigma(10000)','from csigma import sigma').timeit(10000)
print Timer('sigma(10000)','from pysigma import sigma').timeit(10000)
㈧ Python 開發中有哪些高級技巧
bobby《Python3高級核心技術97講》(超清視頻)網路網盤
鏈接: https://pan..com/s/1iJ9VvVE3Km_x4-RCfI5Anw
若資源有問題歡迎追問~
㈨ python是什麼語言編寫出來的
python是什麼語言編寫出來的?
python是C語言編寫出來的,並且Python提供了豐富的API和工具,所以程序員能夠輕松地使用C語言、C++、Cython來編寫擴充模塊。
Python簡介:
Python是一種計算機程序設計語言。是一種面向對象的動態類型語言,最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越來越多被用於獨立的、大型項目的開發。
Python是一種解釋型腳本語言,可以應用於以下領域:
Web 和 Internet開發
科學計算和統計
人工智慧
教育
桌面界面開發
軟體開發
後端開發
相關推薦:《Python教程》以上就是小編分享的關於python是什麼語言編寫出來的的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!