導航:首頁 > 編程語言 > python向量化編程

python向量化編程

發布時間:2022-07-19 16:01:35

Ⅰ 優化python編程的4個妙招

1. Pandas.apply() – 特徵工程瑰寶



Pandas 庫已經非常優化了,但是大部分人都沒有發揮它的最大作用。想想它一般會用於數據科學項目中的哪些地方。一般首先能想到的就是特徵工程,即用已有特徵創造新特徵。其中最高效的方法之一就是Pandas.apply(),即Pandas中的apply函數。



在Pandas.apply()中,可以傳遞用戶定義功能並將其應用到Pandas Series的所有數據點中。這個函數是Pandas庫最好的擴展功能之一,它能根據所需條件分隔數據。之後便能將其有效應用到數據處理任務中。



2. Pandas.DataFrame.loc – Python數據操作絕妙技巧



所有和數據處理打交道的數據科學家(差不多所有人了!)都應該學會這個方法。



很多時候,數據科學家需要根據一些條件更新數據集中某列的某些值。Pandas.DataFrame.loc就是此類問題最優的解決方法。



3. Python函數向量化



另一種解決緩慢循環的方法就是將函數向量化。這意味著新建函數會應用於輸入列表,並返回結果數組。在Python中使用向量化能至少迭代兩次,從而加速計算。



事實上,這樣不僅能加速代碼運算,還能讓代碼更加簡潔清晰。



4. Python多重處理



多重處理能使系統同時支持一個以上的處理器。



此處將數據處理分成多個任務,讓它們各自獨立運行。處理龐大的數據集時,即使是apply函數也顯得有些遲緩。



關於優化Python編程的4個妙招,青藤小編就和您分享到這里了。如果您對python編程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於python編程的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅱ python編寫程序的一般步驟

鏈接:

提取碼:dfsm

Python 編程高手之路。本課程分五個階段,詳細的為您打造高手之路,本課程適合有一定python基礎的同學。

用Python可以做什麼?可以做日常任務,比如自動備份你的MP3;可以做網站,很多著名的網站就是Python寫的。總之就是能幹很多很多事。

課程目錄:

第一階段

第一章:用戶交互

第二章:流程式控制制

第三章:數據類型

第四章:字元編碼

第五章:文件處理

第二階段

第六章:函數概述

第七章:閉包函數

......

Ⅲ Python編程常用技巧

鏈接:https://pan..com/s/1Nb7euy7yqFQqALbBgKzlVw

提取碼:dfsm

Python 編程高手之路。本課程分五個階段,詳細的為您打造高手之路,本課程適合有一定python基礎的同學。

用Python可以做什麼?可以做日常任務,比如自動備份你的MP3;可以做網站,很多著名的網站就是Python寫的。總之就是能幹很多很多事。

課程目錄:

第一階段

第一章:用戶交互

第二章:流程式控制制

第三章:數據類型

第四章:字元編碼

第五章:文件處理

第二階段

第六章:函數概述

第七章:閉包函數

......

Ⅳ python怎麼學習

對於很多想學習Python的小夥伴來說,不知道從何開始,小蝸這里整理了一份Python全棧開發的學習路線,大家可按照以下這份大綱來進行學習:

第一階段:專業核心基礎

階段目標:
1. 熟練掌握Python的開發環境與編程核心知識
2. 熟練運用Python面向對象知識進行程序開發
3. 對Python的核心庫和組件有深入理解
4. 熟練應用SQL語句進行資料庫常用操作
5. 熟練運用Linux操作系統命令及環境配置
6. 熟練使用MySQL,掌握資料庫高級操作
7. 能綜合運用所學知識完成項目

知識點:
Python編程基礎、Python面向對象、Python高級進階、MySQL資料庫、Linux操作系統。
1、Python編程基礎,語法規則,函數與參數,數據類型,模塊與包,文件IO,培養扎實的Python編程基本功,同時對Python核心對象和庫的編程有熟練的運用。
2、Python面向對象,核心對象,異常處理,多線程,網路編程,深入理解面向對象編程,異常處理機制,多線程原理,網路協議知識,並熟練運用於項目中。
3、類的原理,MetaClass,下劃線的特殊方法,遞歸,魔術方法,反射,迭代器,裝飾器,UnitTest,Mock。深入理解面向對象底層原理,掌握Python開發高級進階技術,理解單元測試技術。
4、資料庫知識,範式,MySQL配置,命令,建庫建表,數據的增刪改查,約束,視圖,存儲過程,函數,觸發器,事務,游標,PDBC,深入理解資料庫管理系統通用知識及MySQL資料庫的使用與管理。為Python後台開發打下堅實基礎。
5、Linux安裝配置,文件目錄操作,VI命令,管理,用戶與許可權,環境配置,Docker,Shell編程Linux作為一個主流的伺服器操作系統,是每一個開發工程師必須掌握的重點技術,並且能夠熟練運用。

第二階段:PythonWEB開發

階段目標:
1. 熟練掌握Web前端開發技術,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系統中的前後端交互過程與通信協議
3. 熟練運用Web前端和Django和Flask等主流框架完成Web系統開發
4. 深入理解網路協議,分布式,PDBC,AJAX,JSON等知識
5. 能夠運用所學知識開發一個MiniWeb框架,掌握框架實現原理
6. 使用Web開發框架實現貫穿項目

知識點:
Web前端編程、Web前端高級、Django開發框架、Flask開發框架、Web開發項目實戰。
1、Web頁面元素,布局,CSS樣式,盒模型,JavaScript,JQuery與Bootstrap掌握前端開發技術,掌握JQuery與BootStrap前端開發框架,完成頁面布局與美化。
2、前端開發框架Vue,JSON數據,網路通信協議,Web伺服器與前端交互熟練使用Vue框架,深入理解HTTP網路協議,熟練使用Swagger,AJAX技術實現前後端交互。
3、自定義Web開發框架,Django框架的基本使用,Model屬性及後端配置,Cookie與Session,模板Templates,ORM數據模型,Redis二級緩存,RESTful,MVC模型掌握Django框架常用API,整合前端技術,開發完整的WEB系統和框架。
4、Flask安裝配置,App對象的初始化和配置,視圖函數的路由,Request對象,Abort函數,自定義錯誤,視圖函數的返回值,Flask上下文和請求鉤子,模板,資料庫擴展包Flask-Sqlalchemy,資料庫遷移擴展包Flask-Migrate,郵件擴展包Flask-Mail。掌握Flask框架的常用API,與Django框架的異同,並能獨立開發完整的WEB系統開發。

第三階段:爬蟲與數據分析

階段目標:
1. 熟練掌握爬蟲運行原理及常見網路抓包工具使用,能夠對HTTP及HTTPS協議進行抓包分析
2. 熟練掌握各種常見的網頁結構解析庫對抓取結果進行解析和提取
3. 熟練掌握各種常見反爬機制及應對策略,能夠針對常見的反爬措施進行處理
4. 熟練使用商業爬蟲框架Scrapy編寫大型網路爬蟲進行分布式內容爬取
5. 熟練掌握數據分析相關概念及工作流程
6. 熟練掌握主流數據分析工具Numpy、Pandas和Matplotlib的使用
7. 熟練掌握數據清洗、整理、格式轉換、數據分析報告編寫
8. 能夠綜合利用爬蟲爬取豆瓣網電影評論數據並完成數據分析全流程項目實戰

知識點:
網路爬蟲開發、數據分析之Numpy、數據分析之Pandas。
1、爬蟲頁面爬取原理、爬取流程、頁面解析工具LXML,Beautifulfoup,正則表達式,代理池編寫和架構、常見反爬措施及解決方案、爬蟲框架結構、商業爬蟲框架Scrapy,基於對爬蟲爬取原理、網站數據爬取流程及網路協議的分析和了解,掌握網頁解析工具的使用,能夠靈活應對大部分網站的反爬策略,具備獨立完成爬蟲框架的編寫能力和熟練應用大型商業爬蟲框架編寫分布式爬蟲的能力。
2、Numpy中的ndarray數據結構特點、numpy所支持的數據類型、自帶的數組創建方法、算術運算符、矩陣積、自增和自減、通用函數和聚合函數、切片索引、ndarray的向量化和廣播機制,熟悉數據分析三大利器之一Numpy的常見使用,熟悉ndarray數據結構的特點和常見操作,掌握針對不同維度的ndarray數組的分片、索引、矩陣運算等操作。
3、Pandas裡面的三大數據結構,包括Dataframe、Series和Index對象的基本概念和使用,索引對象的更換及刪除索引、算術和數據對齊方法,數據清洗和數據規整、結構轉換,熟悉數據分析三大利器之一Pandas的常見使用,熟悉Pandas中三大數據對象的使用方法,能夠使用Pandas完成數據分析中最重要的數據清洗、格式轉換和數據規整工作、Pandas對文件的讀取和操作方法。
4、matplotlib三層結構體系、各種常見圖表類型折線圖、柱狀圖、堆積柱狀圖、餅圖的繪制、圖例、文本、標線的添加、可視化文件的保存,熟悉數據分析三大利器之一Matplotlib的常見使用,熟悉Matplotlib的三層結構,能夠熟練使用Matplotlib繪制各種常見的數據分析圖表。能夠綜合利用課程中所講的各種數據分析和可視化工具完成股票市場數據分析和預測、共享單車用戶群里數據分析、全球幸福指數數據分析等項目的全程實戰。

第四階段:機器學習與人工智慧

階段目標:
1. 理解機器學習相關的基本概念及系統處理流程
2. 能夠熟練應用各種常見的機器學習模型解決監督學習和非監督學習訓練和測試問題,解決回歸、分類問題
3. 熟練掌握常見的分類演算法和回歸演算法模型,如KNN、決策樹、隨機森林、K-Means等
4. 掌握卷積神經網路對圖像識別、自然語言識別問題的處理方式,熟悉深度學習框架TF裡面的張量、會話、梯度優化模型等
5. 掌握深度學習卷積神經網路運行機制,能夠自定義卷積層、池化層、FC層完成圖像識別、手寫字體識別、驗證碼識別等常規深度學習實戰項目

知識點:
1、機器學習常見演算法、sklearn數據集的使用、字典特徵抽取、文本特徵抽取、歸一化、標准化、數據主成分分析PCA、KNN演算法、決策樹模型、隨機森林、線性回歸及邏輯回歸模型和演算法。熟悉機器學習相關基礎概念,熟練掌握機器學習基本工作流程,熟悉特徵工程、能夠使用各種常見機器學習演算法模型解決分類、回歸、聚類等問題。
2、Tensorflow相關的基本概念,TF數據流圖、會話、張量、tensorboard可視化、張量修改、TF文件讀取、tensorflow playround使用、神經網路結構、卷積計算、激活函數計算、池化層設計,掌握機器學習和深度學習之前的區別和練習,熟練掌握深度學習基本工作流程,熟練掌握神經網路的結構層次及特點,掌握張量、圖結構、OP對象等的使用,熟悉輸入層、卷積層、池化層和全連接層的設計,完成驗證碼識別、圖像識別、手寫輸入識別等常見深度學習項目全程實戰。

Ⅳ 如何系統地自學 Python

是否非常想學好 Python,一方面被瑣事糾纏,一直沒能動手,另一方面,擔心學習成本太高,心裡默默敲著退堂鼓?

幸運的是,Python 是一門初學者友好的編程語言,想要完全掌握它,你不必花上太多的時間和精力。

Python 的設計哲學之一就是簡單易學,體現在兩個方面:

Ⅵ Python課程內容都學習什麼啊

賀聖軍Python輕松入門到項目實戰(經典完整版)(超清視頻)網路網盤

鏈接: https://pan..com/s/1C9k1o65FuQKNe68L3xEx3w

提取碼: ja8v 復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題歡迎追問~

Ⅶ 什麼是python編程

Python是一門新興的編程語言,編程語言有很多,比如C++、Java、C#、PHP、JavaScript等,Python也是其中之一,在學習Python前,我們需要對它有一定的了解。
Python支持多種編程范型,如函數式、指令式、結構化、面向對象和反射式編程。
Python解釋器易於擴展,可以使用C或C++或其他可以通過C調用的語言擴展新的功能和數據類型。
Python編寫的程序不需要編譯成二進制代碼,可以直接從源代碼運行程序,在計算機內部,Python解釋器把源代碼轉換成位元組碼的中間形式,然後再把它翻譯成計算機使用的機器語言並運行。
語法簡潔而清晰,具有豐富和強大的類庫,使用Python快速生成程序的原型,然後對其中有特別要求的部分,用更合適的語言改寫,性能要求特別高,就可以用C/C++重寫,而後封裝為Python可以調用的擴展類庫。
只有基礎建牢固了,才會更利於我們以後的發展及進步,現如今Python的發展十分迅速,已經將C++語言甩在了後邊,在不久的將來,可能會超過C和Java這些主流語言。

Ⅷ 用Python如何編程

要它幹嘛?

Ⅸ Python編程

def eatDou(self, n: int) -> int:
m = [0,1,2]
for i in range(3,n+1):
m.append(m[i-1]+m[i-2])
return m[n]
n=int(input('輸入豆豆數'))

print(eatDou(n))

閱讀全文

與python向量化編程相關的資料

熱點內容
伺服器無響應是什麼原因呀 瀏覽:982
wd文檔里的app怎麼製作 瀏覽:511
電腦里的文件夾沒有了一般能恢復嗎 瀏覽:416
哪裡有配加密鑰匙的 瀏覽:208
伺服器開不了機怎麼把數據弄出來 瀏覽:958
gif動態圖片怎麼壓縮 瀏覽:519
黑猴子棒球壓縮文件解壓密碼 瀏覽:631
如何讓app適應不同的手機屏幕大小 瀏覽:8
蘋果手機如何給安卓手機分享軟體 瀏覽:759
蘋果電腦怎麼運行騰訊雲伺服器 瀏覽:59
明日之後沙石堡命令助手 瀏覽:261
蛋糕店用什麼樣的app 瀏覽:877
長安銀行信用卡app怎麼取現 瀏覽:635
dos命令cmd命令的 瀏覽:226
阿里雲存檔視頻文件的伺服器 瀏覽:194
ftp修改文件許可權命令 瀏覽:491
周易八卦梅花演算法 瀏覽:676
java組織機構 瀏覽:953
h5大轉盤游戲源碼 瀏覽:592
學校伺服器地址查詢 瀏覽:109