『壹』 怎樣用 python 進行數據分析
做數據分析,首先你要知道有哪些數據分析的方法,然後才是用Python去調用這些方法
那Python有哪些庫類是能做數據分析的,很多,pandas,sklearn等等
所以你首先要裝一個anaconda套件,它包含了幾乎所有的Python數據分析工具,
之後再學怎麼分析。
『貳』 新手Python數據分析如何入門
1、數據獲取Python具有靈活易用,便利讀寫的特點,其能夠非常便利地調用資料庫和本地的數據,同時,Python也是當下網路爬蟲的首選東西。Scrapy爬蟲,Python開發的一個快速、高層次的屏幕抓取和web抓取框架,用於抓取web站點並從頁面中提取結構化的數據。Scrapy用途廣泛,能夠用於數據挖掘、監測和自動化測驗。
2、數據整理NumPy供給了許多高檔的數值編程東西,如:矩陣數據類型、矢量處理,以及精密的運算庫。專為進行嚴格的數字處理而產生。多為很多大型金融公司運用,以及核心的科學核算組織如:Lawrence
Livermore,NASA用其處理一些原本運用C++,Fortran或Matlab等所做的使命。PandasPandas是根據NumPy的一種東西,該東西是為了處理數據剖析使命而創立的。Pandas納入了大量庫和一些標準的數據模型,供給了高效地操作大型數據集所需的東西。pandas供給了大量能使咱們快速便捷地處理數據的函數和方法。你很快就會發現,它是使Python成為強壯而高效的數據剖析環境的重要因素之一。
3、建模剖析Scikit-learn從事數據剖析建模必學的包,供給及匯總了當時數據剖析范疇常見的演算法及處理問題,如分類問題、回歸問題、聚類問題、降維、模型挑選、特徵工程。
4、數據可視化如果在Python中看可視化,你可能會想到Matplotlib。除此之外,Seaborn是一個類似的包,這是用於統計可視化的包。關於自學python入門,Python數據剖析怎麼入門,以上就是一個根本的學習路線規劃了。
『叄』 誰知道這個python數據分析教程是哪個機構的嗎或者有資源的! 非常感謝
使用Python進行數據挖掘是最近幾年才開始火起來的,之前網上很多的資料都是關於Python網頁開發等。但使用Python進行數據挖掘的側重點已經完成不一樣了。本人就是浪費了很多時間來篩選這些博客、書籍。所以就有了本文,希望能幫大家少走一點彎路。
熟練掌握任何一門語言,幾乎都需要經過以下過程:
良師--學習Python課程+入門書籍+瀏覽技術博客
社區幫助--善於使用搜索引擎、Mail List
益友 -- 尋找學習夥伴
Learn by Code --項目實踐
一、Python學習課程推薦
這兩個學習課程從最基礎的Python語法開始,介紹了Python數據分析、統計模型以及機器學習的各個方面,內容十分充足。之所以建議使用老外的課程是因為,老外上課假定你什麼都不會,講解深入淺出,尤其是對於華盛頓大學的機器學習課程,把復雜的概念講解得十分簡單。
1. 密歇根大學的《學習使用Python編程並分析數據》主要包括以下課程(講解十分詳細,深入淺出,非常適合入門學習,視頻都是有字幕的):
《大家的編程 (Python 入門》:課程涵蓋了如何使用Python的基本指令編寫程序. 課程對學生沒有先設要求, 我們只涉及到最基本的數學, 有一定使用電腦經驗的人都可以完全掌握這門課的內容.
《Python 數據結構》:本課程將介紹Python編程語言的核心數據結構。我們將學習編程語言的基礎概念,探索如何使用Python的內置數據結構,如列表、字典、元組,進行更為復雜的數據分析。
《使用 Python 訪問網路數據》:使用Python爬取和解析網路數據
《Python 資料庫開發》:使用Python和資料庫進行交互
《使用 Python 獲取並處理數據,並用可視化方式展現數據》
2. 華盛頓大學的《機器學習》專項課程
在專項課程頁面無法選擇旁聽,必須點擊進入單獨課程頁面才可,這個課程專題旁聽是有限制的,無法提交作業;如有需求,可以申請獎學金,回答三個問題即可,系統自動通過申請。
《機器學習基礎:案例研究》:你是否好奇數據可以告訴你什麼?你是否想在關於機器學習促進商業的核心方式上有深層次的理解?你是否想能同專家們討論關於回歸,分類,深度學習以及推薦系統的一切?在這門課上,你將會通過一系列實際案例學習來獲取實踐經歷。
《機器學習:回歸》
《機器學習:分類》
《機器學習:聚類和檢索》
《機器學習:推薦系統和降維》
《機器學習:應用深度學習創建智能運用》
二、網上打碼教程
Learn by doing!!! 學習編程最有效的方式就是敲代碼!
Codecademy圍繞Python 的基礎語法,內容非常豐富。
DatacampPython基本語法(他家的R語言課程十分不錯!)
三、Python技術博客
簡單介紹一些非常棒的Python技術學習的博客
1.廖雪峰Python教程簡單易上手的Python基礎語法教程,值得學習, Python 2和Python 3版本都有。
2.非常棒的pandas練習Github Repo
3.很詳細的Python 爬蟲教程
4.國外Data Science博客大全
四、Python入門書籍推薦
常用書籍下載網址,幾乎囊括了網上能找得到的所有Python相關的書籍(pdf、Epub和mo bi格式),且提供雲盤下載鏈接。你值得擁有!
python | 搜索結果
1. 掌握Python語法的基礎上學習《Python for data analysis》是比較不錯的選擇,涵蓋了ipython notebook、Numpy、Scipy和Pandas包的使用。
2.《Python數據分析與挖掘實戰》介紹了使用Python進行數據挖掘的詳細案例,數據和代碼都可以下載,作為機器學習的進階學習是不錯的選擇(這本書也用對應的R語言和Matlab 版本)。
3.《Python Cookbook》很厚的一本書,可以作為Python語法查詢手冊。
再添加幾個外文書籍下載網址:
1.All IT eBooks全
2.Library Genesis各種書籍,不局限於編程書籍
3.Fox eBook - eBooks Free Download Site
4.Development / Programming / AvaxHome
五、推薦訂閱博客(更細頻率較高)
iPhone上可以使用Reeder閱讀器,Instapaper用來保存後稍後閱讀,因為信息量比較大。
No free HunchKaggle競賽平台的官方博客,包括一些優秀的代碼解讀以及高分選手的采訪,十分有用的經驗(來自不同背景,不同年齡層次,不同職業的選手)
Flowing Data十分有用的數據分析的案例
Python日報內容十分精彩的集錦(中文)
六、FAQ (待續)
Python 2.x還是Python 3.x?
如何安裝Python包? 強烈推薦Anaconda包,你值得擁有!尤其是Windows系統。
是否需要很強的統計和數學背景? 有良好的數學和統計背景固然很好,但是現在很多崗位對數學和統計背景要求並不很多,都是簡單的演算法,Python編程已經能夠很方便地實現,更多的是對業務的深入理解。如有需要建議,邊學習Python邊學習數學統計。
七、實踐項目
Kaggle競賽項目,裡面不僅僅有很多競賽項目,而且有很多可供學習的代碼、博客以及論壇,都是實戰項目,有很強的實踐價值。
『肆』 python怎麼做大數據分析
數據獲取:公開數據、Python爬蟲外部數據的獲取方式主要有以下兩種。(推薦學習:Python視頻教程)
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urlpb、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python怎麼做大數據分析的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
『伍』 python統計excel數據分析
摘要 您好親這邊由星座小輝為您服務首先感謝您的提問這邊為您解答
『陸』 如何利用python進行數據分析
1、集體智慧編程
因為Python是一門不需要花太多精力(甚至可以說很少),就可以基本掌握的一門語言,所以推薦這本書。題主提到以後想學機器學習,這是一本非常好的入門書,書中的例子源碼都是Python實現的,並且能幫你迅速熟悉Python相關的各種計算庫。
2、統計學習方法
考慮到題主要學得踏實,這本書深入淺出地講了和機器學習有關的一切數學基礎知識,一整本的干貨,沒有廢話,非常值得一讀。題主數學專業的話,讀起來應該會比我更順暢。
『柒』 Python數據分析怎麼入門
一、數據獲取Python具有靈活易用,方便讀寫的特點,其可以非常方便地調用資料庫和本地的數據,同時,Python也是當下網路爬蟲的首選工具。Scrapy爬蟲,Python開發的一個快速、高層次的屏幕抓取和web抓取框架,用於抓取web站點並從頁面中提取結構化的數據。Scrapy用途廣泛,可以用於數據挖掘、監測和自動化測試。
二、數據整理NumPy提供了許多高級的數值編程工具,如:矩陣數據類型、矢量處理,以及精密的運算庫。專為進行嚴格的數字處理而產生。多為很多大型金融公司使用,以及核心的科學計算組織如:Lawrence Livermore,NASA用其處理一些本來使用C++,Fortran或Matlab等所做的任務。PandasPandas是基於NumPy的一種工具,該工具是為了解決數據分析任務而創建的。Pandas納入了大量庫和一些標準的數據模型,提供了高效地操作大型數據集所需的工具。pandas提供了大量能使我們快速便捷地處理數據的函數和方法。你很快就會發現,它是使Python成為強大而高效的數據分析環境的重要因素之一。
三、建模分析Scikit-learn從事數據分析建模必學的包,提供及匯總了當前數據分析領域常見的演算法及解決問題,如分類問題、回歸問題、聚類問題、降維、模型選擇、特徵工程。四、數據可視化如果在Python中看可視化,你可能會想到Matplotlib。除此之外,Seaborn是一個類似的包,這是用於統計可視化的包。
關於Python數據分析怎麼入門,環球青藤小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。
『捌』 如何使用python做統計分析
Shape Parameters
形態參數
While a general continuous random variable can be shifted and scaled
with the loc and scale parameters, some distributions require additional
shape parameters. For instance, the gamma distribution, with density
γ(x,a)=λ(λx)a−1Γ(a)e−λx,
requires the shape parameter a. Observe that setting λ can be obtained by setting the scale keyword to 1/λ.
雖然一個一般的連續隨機變數可以被位移和伸縮通過loc和scale參數,但一些分布還需要額外的形態參數。作為例子,看到這個伽馬分布,這是它的密度函數
γ(x,a)=λ(λx)a−1Γ(a)e−λx,
要求一個形態參數a。注意到λ的設置可以通過設置scale關鍵字為1/λ進行。
Let』s check the number and name of the shape parameters of the gamma
distribution. (We know from the above that this should be 1.)
讓我們檢查伽馬分布的形態參數的名字的數量。(我們知道從上面知道其應該為1)
>>>
>>> from scipy.stats import gamma
>>> gamma.numargs
1
>>> gamma.shapes
'a'
Now we set the value of the shape variable to 1 to obtain the
exponential distribution, so that we compare easily whether we get the
results we expect.
現在我們設置形態變數的值為1以變成指數分布。所以我們可以容易的比較是否得到了我們所期望的結果。
>>>
>>> gamma(1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
Notice that we can also specify shape parameters as keywords:
注意我們也可以以關鍵字的方式指定形態參數:
>>>
>>> gamma(a=1, scale=2.).stats(moments="mv")
(array(2.0), array(4.0))
Freezing a Distribution
凍結分布
Passing the loc and scale keywords time and again can become quite
bothersome. The concept of freezing a RV is used to solve such problems.
不斷地傳遞loc與scale關鍵字最終會讓人厭煩。而凍結RV的概念被用來解決這個問題。
>>>
>>> rv = gamma(1, scale=2.)
By using rv we no longer have to include the scale or the shape
parameters anymore. Thus, distributions can be used in one of two ways,
either by passing all distribution parameters to each method call (such
as we did earlier) or by freezing the parameters for the instance of the
distribution. Let us check this:
通過使用rv我們不用再更多的包含scale與形態參數在任何情況下。顯然,分布可以被多種方式使用,我們可以通過傳遞所有分布參數給對方法的每次調用(像我們之前做的那樣)或者可以對一個分布對象凍結參數。讓我們看看是怎麼回事:
>>>
>>> rv.mean(), rv.std()
(2.0, 2.0)
This is indeed what we should get.
這正是我們應該得到的。
Broadcasting
廣播
The basic methods pdf and so on satisfy the usual numpy broadcasting
rules. For example, we can calculate the critical values for the upper
tail of the t distribution for different probabilites and degrees of
freedom.
像pdf這樣的簡單方法滿足numpy的廣播規則。作為例子,我們可以計算t分布的右尾分布的臨界值對於不同的概率值以及自由度。
>>>
>>> stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])
array([[ 1.37218364, 1.81246112, 2.76376946],
[ 1.36343032, 1.79588482, 2.71807918]])
Here, the first row are the critical values for 10 degrees of freedom
and the second row for 11 degrees of freedom (d.o.f.). Thus, the
broadcasting rules give the same result of calling isf twice:
這里,第一行是以10自由度的臨界值,而第二行是以11為自由度的臨界值。所以,廣播規則與下面調用了兩次isf產生的結果相同。
>>>
>>> stats.t.isf([0.1, 0.05, 0.01], 10)
array([ 1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.01], 11)
array([ 1.36343032, 1.79588482, 2.71807918])
If the array with probabilities, i.e, [0.1, 0.05, 0.01] and the array of
degrees of freedom i.e., [10, 11, 12], have the same array shape, then
element wise matching is used. As an example, we can obtain the 10% tail
for 10 d.o.f., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f.
by calling
但是如果概率數組,如[0.1,0.05,0.01]與自由度數組,如[10,11,12]具有相同的數組形態,則元素對應捕捉被作用,我們可以分別得到10%,5%,1%尾的臨界值對於10,11,12的自由度。
>>>
>>> stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])
array([ 1.37218364, 1.79588482, 2.68099799])
Specific Points for Discrete Distributions
離散分布的特殊之處
Discrete distribution have mostly the same basic methods as the
continuous distributions. However pdf is replaced the probability mass
function pmf, no estimation methods, such as fit, are available, and
scale is not a valid keyword parameter. The location parameter, keyword
loc can still be used to shift the distribution.
離散分布的簡單方法大多數與連續分布很類似。當然像pdf被更換為密度函數pmf,沒有估計方法,像fit是可用的。而scale不是一個合法的關鍵字參數。Location參數,關鍵字loc則仍然可以使用用於位移。
The computation of the cdf requires some extra attention. In the case of
continuous distribution the cumulative distribution function is in most
standard cases strictly monotonic increasing in the bounds (a,b) and
has therefore a unique inverse. The cdf of a discrete distribution,
however, is a step function, hence the inverse cdf, i.e., the percent
point function, requires a different definition:
ppf(q) = min{x : cdf(x) >= q, x integer}
Cdf的計算要求一些額外的關注。在連續分布的情況下,累積分布函數在大多數標准情況下是嚴格遞增的,所以有唯一的逆。而cdf在離散分布,無論如何,是階躍函數,所以cdf的逆,分位點函數,要求一個不同的定義:
ppf(q) = min{x : cdf(x) >= q, x integer}
For further info, see the docs here.
為了更多信息可以看這里。
We can look at the hypergeometric distribution as an example
>>>
>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]
我們可以看這個超幾何分布的例子
>>>
>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]
If we use the cdf at some integer points and then evaluate the ppf at
those cdf values, we get the initial integers back, for example
如果我們使用在一些整數點使用cdf,它們的cdf值再作用ppf會回到開始的值。
>>>
>>> x = np.arange(4)*2
>>> x
array([0, 2, 4, 6])
>>> prb = hypergeom.cdf(x, M, n, N)
>>> prb
array([ 0.0001031991744066, 0.0521155830753351, 0.6083591331269301,
0.9897832817337386])
>>> hypergeom.ppf(prb, M, n, N)
array([ 0., 2., 4., 6.])
If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:
如果我們使用的值不是cdf的函數值,則我們得到一個更高的值。
>>>
>>> hypergeom.ppf(prb + 1e-8, M, n, N)
array([ 1., 3., 5., 7.])
>>> hypergeom.ppf(prb - 1e-8, M, n, N)
array([ 0., 2., 4., 6.])
『玖』 python數據分析該怎麼入門呢
1.為什麼選擇Python進行數據分析?
Python是一門動態的、面向對象的腳本語言,同時也是一門簡約,通俗易懂的編程語言。Python入門簡單,代碼可讀性強,一段好的Python代碼,閱讀起來像是在讀一篇外語文章。Python這種特性稱為「偽代碼」,它可以使你只關心完成什麼樣的工作任務,而不是糾結於Python的語法。
另外,Python是開源的,它擁有非常多優秀的庫,可以用於數據分析及其他領域。更重要的是,Python與最受歡迎的開源大數據平台Hadoop具有很好的兼容性。因此,學習Python對於有志於向大數據分析崗位發展的數據分析師來說,是一件非常節省學習成本的事。
Python的眾多優點讓它成為最受歡迎的程序設計語言之一,國內外許多公司也已經在使用Python,例YouTube,Google,阿里雲等等。
3.數據分析流程
Python是數據分析利器,掌握了Python的編程基礎後,就可以逐漸進入數據分析的奇妙世界。CDA數據分析師認為一個完整的數據分析項目大致可分為以下五個流程:
在這一階段,Python也具有很好的工具庫支持我們的建模工作:
scikit-learn-適用Python實現的機器學習演算法庫。scikit-learn可以實現數據預處理、分類、回歸、降維、模型選擇等常用的機器學習演算法。
Tensorflow-適用於深度學習且數據處理需求不高的項目。這類項目往往數據量較大,且最終需要的精度更高。
5)可視化分析
數據分析最後一步是撰寫數據分析報告,這也是數據可視化的一個過程。在數據可視化方面,Python目前主流的可視化工具有:
Matplotlib-主要用於二維繪圖,它能讓使用者很輕松地將數據圖形化,並且提供多樣化的輸出格式。
Seaborn-是基於matplotlib產生的一個模塊,專攻於統計可視化,可以和Pandas進行無縫鏈接。
從上圖我們也可以得知,在整個數據分析流程,無論是數據提取、數據預處理、數據建模和分析,還是數據可視化,Python目前已經可以很好地支持我們的數據分析工作。