導航:首頁 > 編程語言 > python進程調用線程

python進程調用線程

發布時間:2022-07-25 00:57:28

python 多進程和多線程配合

由於python的多線程中存在PIL鎖,因此python的多線程不能利用多核,那麼,由於現在的計算機是多核的,就不能充分利用計算機的多核資源。但是python中的多進程是可以跑在不同的cpu上的。因此,嘗試了多進程+多線程的方式,來做一個任務。比如:從中科大的鏡像源中下載多個rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()

regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)

rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)

thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25

res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'

start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718

代碼的功能主要是這樣的:
main()方法中調用get_rpm_url_list(base_url)方法,獲取要下載的每個rpm包的具體的url地址。其中base_url即中科大基礎的鏡像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,這個地址下有幾十個rpm包,get_rpm_url_list方法將每個rpm包的url地址拼出來並返回。
multi_process(rpm_url_list)啟動多進程方法,在該方法中,會調用多線程方法。該方法啟動4個多進程,將上面方法得到的rpm包的url地址進行分組,分成4組,然後每一個組中的rpm包再最後由不同的線程去執行。從而達到了多進程+多線程的配合使用。
代碼還有需要改進的地方,比如多進程啟動的進程個數和rpm包的url地址分組是硬編碼,這個還需要改進,畢竟,不同的機器,適合同時啟動的進程個數是不同的。

Ⅱ Python中的多進程與多線程/分布式該如何使用

Python提供了非常好用的多進程包multiprocessing,你只需要定義一個函數,Python會替你完成其他所有事情。
藉助這個包,可以輕松完成從單進程到並發執行的轉換。
1、新建單一進程
如果我們新建少量進程,可以如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."12345678910111213
2、使用進程池
是的,你沒有看錯,不是線程池。它可以讓你跑滿多核CPU,而且使用方法非常簡單。
注意要用apply_async,如果落下async,就變成阻塞版本了。
processes=4是最多並發進程數量。
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."12345678910111213141516
3、使用Pool,並需要關注結果
更多的時候,我們不僅需要多進程執行,還需要關注每個進程的執行結果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
2014.12.25更新
根據網友評論中的反饋,在Windows下運行有可能崩潰(開啟了一大堆新窗口、進程),可以通過如下調用來解決:
multiprocessing.freeze_support()1
附錄(自己的腳本):
#!/usr/bin/python
import threading
import subprocess
import datetime
import multiprocessing
def dd_test(round, th):
test_file_arg = 'of=/zbkc/test_mds_crash/1m_%s_%s_{}' %(round, th)
command = "seq 100 | xargs -i dd if=/dev/zero %s bs=1M count=1" %test_file_arg
print command
subprocess.call(command,shell=True,stdout=open('/dev/null','w'),stderr=subprocess.STDOUT)
def mds_stat(round):
p = subprocess.Popen("zbkc mds stat", shell = True, stdout = subprocess.PIPE)
out = p.stdout.readlines()
if out[0].find('active') != -1:
command = "echo '0205pm %s round mds status OK, %s' >> /round_record" %(round, datetime.datetime.now())
command_2 = "time (ls /zbkc/test_mds_crash/) 2>>/round_record"
command_3 = "ls /zbkc/test_mds_crash | wc -l >> /round_record"
subprocess.call(command,shell=True)
subprocess.call(command_2,shell=True)
subprocess.call(command_3,shell=True)
return 1
else:
command = "echo '0205 %s round mds status abnormal, %s, %s' >> /round_record" %(round, out[0], datetime.datetime.now())
subprocess.call(command,shell=True)
return 0
#threads = []
for round in range(1, 1600):
pool = multiprocessing.Pool(processes = 10) #使用進程池
for th in range(10):
# th_name = "thread-" + str(th)
# threads.append(th_name) #添加線程到線程列表
# threading.Thread(target = dd_test, args = (round, th), name = th_name).start() #創建多線程任務
pool.apply_async(dd_test, (round, th))
pool.close()
pool.join()
#等待線程完成
# for t in threads:
# t.join()
if mds_stat(round) == 0:
subprocess.call("zbkc -s",shell=True)
break

Ⅲ 簡述python進程,線程和協程的區別及應用場景

協程多與線程進行比較
1) 一個線程可以多個協程,一個進程也可以單獨擁有多個協程,這樣python中則能使用多核CPU。
2) 線程進程都是同步機制,而協程則是非同步
3) 協程能保留上一次調用時的狀態,每次過程重入時,就相當於進入上一次調用的狀態

Ⅳ python如何開多進程,在每條進程里再開多線程

辦法很多。通常的辦法是,子線程出異常後,主進程檢查到它的狀態不正常,然後自己主動將其餘線程退出,最後自己再退出。這是穩妥的辦法。

另外的辦法是,某一個子線程專用於監控狀態。它發現狀態不對時,直接強制進程退出。辦法1,發消息給主進程,讓主進程退出。辦法2:用kill, pskill等方法,直接按進程PID殺進程。

Ⅳ python中多進程和多線程的區別

什麼是線程、進程?
進程(process)與線程(thread)是操作系統的基本概念,它們比較抽象,不容易掌握。
關於這兩者,最經典的一句話就是「進程是資源分配的最小單位,線程是CPU調度的最小單位」,線程是程序中一個單一的順序控制流程,進程內一個相對獨立的、可調度的執行單元,是系統獨立調度和分配CPU的基本單位指運行中的程序的調度單位,在單個程序中同時運行多個線程完成不同的工作,稱為多線程。
進程與線程的區別是什麼?
進程是資源分配的基本單位,所有與該進程有關的資源,都被記錄在進程式控制制塊PCB中,以表示該進程擁有這些資源或正在使用它們,另外,進程也是搶占處理機的調度單位,它擁有一個完整的虛擬地址空間,當進程發生調度時,不同的進程擁有不同的虛擬地址空間,而同一進程內的不同線程共享同一地址空間。
與進程相對應的,線程與資源分配無關,它屬於某一個進程,並與進程內的其他線程一起共享進程的資源,線程只由相關堆棧(系統棧或用戶棧)寄存器和線程式控制製表TCB組成,寄存器可被用來存儲線程內的局部變數,但不能存儲其他線程的相關變數。
通常在一個進程中可以包含若干個線程,它們可以利用進程所擁有的資源,在引入線程的操作系統中,通常都是把進程作為分配資源的基本單位,而把線程作為獨立運行和獨立調度的基本單位。
由於線程比進程更小,基本上不擁有系統資源,所以對它的調度所付出的開銷就會小得多,能更高效的提高系統內多個程序間並發執行的程度,從而顯著提高系統資源的利用率和吞吐量。
因而近年來推出的通用操作系統都引入了線程,以便進一步提高系統的並發性,並把它視為現代操作系統的一個重要指標。

Ⅵ Python 進程,線程,協程,鎖機制,你知多少

1.線程和進程:
線程是屬於進程的,線程運行在進程空間內,同一進程所產生的線程共享同一內存空間,當進程退出時該進程所產生的線程都會被強制退出並清除。線程可與屬於同一進程的其它線程共享進程所擁有的全部資源,但是其本身基本上不擁有系統資源,只擁有一點在運行中必不可少的信息(如程序計數器、一組寄存器和棧)。

2.線程、進程與協程:
線程和進程的操作是由程序觸發系統介面,最後的執行者是系統;協程的操作則是程序員
協程存在的意義:對於多線程應用,CPU通過切片的方式來切換線程間的執行,線程切換時需要耗時(保持狀態,下次繼續)。協程,則只使用一個線程,在一個線程中規定某個代碼塊執行順序。
協程的適用場景: 當程序中存在大量不需要CPU的操作時(IO),適用於協程;

Ⅶ Python多線程是什麼意思

多線程能讓你像運行一個獨立的程序一樣運行一段長代碼。這有點像調用子進程(subprocess),不過區別是你調用shu的是一個函數或者一個類,而不是獨立的程序。
程基本上是一個獨立執行流程。單個進程可以由多個線程組成。程序中的每個線程都執行特定的任務。例如,當你在電腦上玩游戲時,比如說國際足聯,整個游戲是一個單一的過程。,但它由幾個線程組成,負責播放音樂、接收用戶的輸入、同步運行對手等。所有這些都是單獨的線程,負責在同一個程序中執行這些不同的任務。
每個進程都有一個始終在運行的線程。這是主線。這個主線程實際上創建子線程對象。子線程也由主線程啟動。

Ⅷ Python中進程與線程的區別是什麼

Num01–>線程

線程是操作系統中能夠進行運算調度的最小單位。它被包含在進程之中,是進程中的實際運作單位。

一個線程指的是進程中一個單一順序的控制流。

一個進程中可以並發多條線程,每條線程並行執行不同的任務。

Num02–>進程

進程就是一個程序在一個數據集上的一次動態執行過程。

進程有以下三部分組成:

1,程序:我們編寫的程序用來描述進程要完成哪些功能以及如何完成。
2,數據集:數據集則是程序在執行過程中需要的資源,比如圖片、音視頻、文件等。
3,進程式控制制塊:進程式控制制塊是用來記錄進程的外部特徵,描述進程的執行變化過程,系統可以用它來控制和管理進程,它是系統感知進程存在的唯一標記。

Num03–>進程和線程的區別:

1、運行方式不同:

進程不能單獨執行,它只是資源的集合。

進程要操作CPU,必須要先創建一個線程。

所有在同一個進程里的線程,是同享同一塊進程所佔的內存空間。

2,關系

進程中第一個線程是主線程,主線程可以創建其他線程;其他線程也可以創建線程;線程之間是平等的。

進程有父進程和子進程,獨立的內存空間,唯一的標識符:pid。

3,速度

啟動線程比啟動進程快。

運行線程和運行進程速度上是一樣的,沒有可比性。

線程共享內存空間,進程的內存是獨立的。

4,創建

父進程生成子進程,相當於復制一份內存空間,進程之間不能直接訪問

創建新線程很簡單,創建新進程需要對父進程進行一次復制。

一個線程可以控制和操作同級線程里的其他線程,但是進程只能操作子進程。

5,交互

同一個進程里的線程之間可以直接訪問。

兩個進程想通信必須通過一個中間代理來實現。

相關推薦:《Python視頻教程》

Num04–>幾個常見的概念

1,什麼的並發和並行?

並發:微觀上CPU輪流執行,宏觀上用戶看到同時執行。因為cpu切換任務非常快。

並行:是指系統真正具有同時處理多個任務(動作)的能力。

2,同步、非同步和輪詢的區別?

同步任務:B一直等著A,等A完成之後,B再執行任務。(打電話案例)

輪詢任務:B沒有一直等待A,B過一會來問一下A,過一會問下A

非同步任務:B不需要一直等著A, B先做其他事情,等A完成後A通知B。(發簡訊案例)

Num05–>進程和線程的優缺點比較

首先,要實現多任務,通常我們會設計Master-Worker模式,Master負責分配任務,Worker負責執行任務,因此,多任務環境下,通常是一個Master,多個Worker。

如果用多進程實現Master-Worker,主進程就是Master,其他進程就是Worker。

如果用多線程實現Master-Worker,主線程就是Master,其他線程就是Worker。

多進程模式最大的優點就是穩定性高,因為一個子進程崩潰了,不會影響主進程和其他子進程。(當然主進程掛了所有進程就全掛了,但是Master進程只負責分配任務,掛掉的概率低)著名的Apache最早就是採用多進程模式。

多進程模式的缺點是創建進程的代價大,在Unix/Linux系統下,用fork調用還行,在Windows下創建進程開銷巨大。另外,操作系統能同時運行的進程數也是有限的,在內存和CPU的限制下,如果有幾千個進程同時運行,操作系統連調度都會成問題。

多線程模式通常比多進程快一點,但是也快不到哪去,而且,多線程模式致命的缺點就是任何一個線程掛掉都可能直接造成整個進程崩潰,因為所有線程共享進程的內存。在Windows上,如果一個線程執行的代碼出了問題,你經常可以看到這樣的提示:「該程序執行了非法操作,即將關閉」,其實往往是某個線程出了問題,但是操作系統會強制結束整個進程。

在Windows下,多線程的效率比多進程要高,所以微軟的IIS伺服器默認採用多線程模式。由於多線程存在穩定性的問題,IIS的穩定性就不如Apache。為了緩解這個問題,IIS和Apache現在又有多進程+多線程的混合模式,真是把問題越搞越復雜。

Num06–>計算密集型任務和IO密集型任務

是否採用多任務的第二個考慮是任務的類型。我們可以把任務分為計算密集型和IO密集型。

第一種:計算密集型任務的特點是要進行大量的計算,消耗CPU資源,比如計算圓周率、對視頻進行高清解碼等等,全靠CPU的運算能力。這種計算密集型任務雖然也可以用多任務完成,但是任務越多,花在任務切換的時間就越多,CPU執行任務的效率就越低,所以,要最高效地利用CPU,計算密集型任務同時進行的數量應當等於CPU的核心數。

計算密集型任務由於主要消耗CPU資源,因此,代碼運行效率至關重要。Python這樣的腳本語言運行效率很低,完全不適合計算密集型任務。對於計算密集型任務,最好用C語言編寫。

第二種:任務的類型是IO密集型,涉及到網路、磁碟IO的任務都是IO密集型任務,這類任務的特點是CPU消耗很少,任務的大部分時間都在等待IO操作完成(因為IO的速度遠遠低於CPU和內存的速度)。對於IO密集型任務,任務越多,CPU效率越高,但也有一個限度。常見的大部分任務都是IO密集型任務,比如Web應用。

IO密集型任務執行期間,99%的時間都花在IO上,花在CPU上的時間很少,因此,用運行速度極快的C語言替換用Python這樣運行速度極低的腳本語言,完全無法提升運行效率。對於IO密集型任務,最合適的語言就是開發效率最高(代碼量最少)的語言,腳本語言是首選,C語言最差。

相關推薦:

Python中的進程是什麼

閱讀全文

與python進程調用線程相關的資料

熱點內容
dota2怎麼設置國服伺服器地址 瀏覽:212
單片機高電平驅動 瀏覽:115
ios多選文件夾 瀏覽:909
加強行車調度命令管理 瀏覽:243
伺服器已禁用什麼意思 瀏覽:150
部隊命令回復 瀏覽:755
神奇寶貝伺服器地圖怎麼設置 瀏覽:382
加密演算法輸出固定長度 瀏覽:862
程序員去重慶還是武漢 瀏覽:121
伺服器如何撤銷網頁登錄限制 瀏覽:980
微信公眾平台php開發視頻教程 瀏覽:628
怎麼看蘋果授權綁定的app 瀏覽:255
壓縮機單級壓縮比 瀏覽:380
linux測試php 瀏覽:971
什麼時候梁旁邊需要加密箍筋 瀏覽:40
微信清粉軟體源碼 瀏覽:717
matlabdoc命令 瀏覽:550
如何去ping伺服器 瀏覽:75
ecshop安裝php55 瀏覽:817
javaword庫 瀏覽:958