導航:首頁 > 編程語言 > Python做徑向圖

Python做徑向圖

發布時間:2022-07-25 20:45:07

① 常用的十大python圖像處理工具

原文標題:10 Python image manipulation tools.
作者 | Parul Pandey
翻譯 | 安其羅喬爾、JimmyHua
今天,在我們的世界裡充滿了數據,圖像成為構成這些數據的重要組成部分。但無論是用於何種用途,這些圖像都需要進行處理。圖像處理就是分析和處理數字圖像的過程,主要旨在提高其質量或從中提取一些信息,然後可以將其用於某種用途。
圖像處理中的常見任務包括顯示圖像,基本操作如裁剪、翻轉、旋轉等,圖像分割,分類和特徵提取,圖像恢復和圖像識別。Python成為這種圖像處理任務是一個恰當選擇,這是因為它作為一種科學編程語言正在日益普及,並且在其生態系統中免費提供許多最先進的圖像處理工具供大家使用。
讓我們看一下可以用於圖像處理任務中的常用 Python 庫有哪些吧。

1.scikit-image
scikit-image是一個開源的Python包,適用於numpy數組。它實現了用於研究,教育和工業應用的演算法和實用工具。即使是那些剛接觸Python生態系統的人,它也是一個相當簡單直接的庫。此代碼是由活躍的志願者社區編寫的,具有高質量和同行評審的性質。
資源
文檔里記錄了豐富的例子和實際用例,閱讀下面的文檔:
http://scikit-image.org/docs/stable/user_guide.html
用法
該包作為skimage導入,大多數功能都在子模塊中找的到。下面列舉一些skimage的例子:
圖像過濾

使用match_template函數進行模板匹配

你可以通過此處查看圖庫找到更多示例。
2. Numpy
Numpy是Python編程的核心庫之一,並為數組提供支持。圖像本質上是包含數據點像素的標准Numpy數組。因此,我們可以通過使用基本的NumPy操作,例如切片、掩膜和花式索引,來修改圖像的像素值。可以使用skimage載入圖像並使用matplotlib顯示圖像。
資源
Numpy的官方文檔頁面提供了完整的資源和文檔列表:
http://www.numpy.org/
用法
使用Numpy來掩膜圖像.

3.Scipy
scipy是Python的另一個類似Numpy的核心科學模塊,可用於基本的圖像操作和處理任務。特別是子模塊scipy.ndimage,提供了在n維NumPy數組上操作的函數。該包目前包括線性和非線性濾波,二值形態學,B樣條插值和對象測量等功能函數。
資源
有關scipy.ndimage包提供的完整功能列表,請參閱下面的鏈接:
https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution
用法
使用SciPy通過高斯濾波器進行模糊:

4. PIL/ Pillow
PIL( Python圖像庫 )是Python編程語言的一個免費庫,它支持打開、操作和保存許多不同的文件格式的圖像。然而, 隨著2009年的最後一次發布,它的開發停滯不前。但幸運的是還有有Pillow,一個PIL積極開發的且更容易安裝的分支,它能運行在所有主要的操作系統,並支持Python3。這個庫包含了基本的圖像處理功能,包括點運算、使用一組內置卷積核的濾波和色彩空間的轉換。
資源
文檔中有安裝說明,以及涵蓋庫的每個模塊的示例:
https://pillow.readthedocs.io/en/3.1.x/index.html
用法
在 Pillow 中使用 ImageFilter 增強圖像:

5. OpenCV-Python
OpenCV( 開源計算機視覺庫 )是計算機視覺應用中應用最廣泛的庫之一 。OpenCV-Python 是OpenCV的python版API。OpenCV-Python的優點不只有高效,這源於它的內部組成是用C/C++編寫的,而且它還容易編寫和部署(因為前端是用Python包裝的)。這使得它成為執行計算密集型計算機視覺程序的一個很好的選擇。
資源
OpenCV-Python-Guide指南可以讓你使用OpenCV-Python更容易:
https://github.com/abidrahmank/OpenCV2-Python-Tutorials
用法
下面是一個例子,展示了OpenCV-Python使用金字塔方法創建一個名為「Orapple」的新水果圖像融合的功能。

6. SimpleCV
SimpleCV 也是一個用於構建計算機視覺應用程序的開源框架。有了它,你就可以訪問幾個高性能的計算機視覺庫,如OpenCV,而且不需要先學習了解位深度、文件格式、顏色空間等。
它的學習曲線大大小於OpenCV,正如它們的口號所說「計算機視覺變得簡單」。一些支持SimpleCV的觀點有:
即使是初學者也可以編寫簡單的機器視覺測試攝像機、視頻文件、圖像和視頻流都是可互操作的資源
官方文檔非常容易理解,而且有大量的例子和使用案例去學習:
https://simplecv.readthedocs.io/en/latest/
用法

7. Mahotas
Mahotas 是另一個計算機視覺和圖像處理的Python庫。它包括了傳統的圖像處理功能例如濾波和形態學操作以及更現代的計算機視覺功能用於特徵計算,包括興趣點檢測和局部描述符。該介面是Python語言,適合於快速開發,但是演算法是用C語言實現的,並根據速度進行了調優。Mahotas庫速度快,代碼簡潔,甚至具有最小的依賴性。通過原文閱讀它們的官方論文以獲得更多的了解。
資源
文檔包括安裝指導,例子,以及一些教程,可以更好的幫助你開始使用mahotas。
https://mahotas.readthedocs.io/en/latest/install.html
用法
Mahotas庫依賴於使用簡單的代碼來完成任務。關於『Finding Wally』的問題,Mahotas做的很好並且代碼量很少。下面是源碼
https://mahotas.readthedocs.io/en/latest/wally.html

8. SimpleITK
ITK 或者 Insight Segmentation and Registration Toolkit是一個開源的跨平台系統,為開發人員提供了一套廣泛的圖像分析軟體工具 。其中, SimpleITK是建立在ITK之上的簡化層,旨在促進其在快速原型設計、教育、解釋語言中的應用。SimpleITK 是一個圖像分析工具包,包含大量支持一般過濾操作、圖像分割和匹配的組件。SimpleITK本身是用C++寫的,但是對於包括Python以內的大部分編程語言都是可用的。
資源
大量的Jupyter Notebooks 表明了SimpleITK在教育和研究領域已經被使用。Notebook展示了用Python和R編程語言使用SimpleITK來進行互動式圖像分析。
http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/
用法
下面的動畫是用SimpleITK和Python創建的剛性CT/MR匹配過程的可視化 。點擊此處可查看源碼!

9. pgmagick
pgmagick是GraphicsMagick庫的一個基於python的包裝。 GraphicsMagick圖像處理系統有時被稱為圖像處理的瑞士軍刀。它提供了一個具有強大且高效的工具和庫集合,支持以88種主要格式(包括重要格式,如DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF)讀取、寫入和操作圖像。
資源
有一個專門用於PgMagick的Github庫 ,其中包含安裝和需求說明。還有關於這個的一個詳細的用戶指導:
https://github.com/hhatto/pgmagick
用法
使用pgmagick可以進行的圖像處理活動很少,比如:
圖像縮放

邊緣提取

10. Pycairo
Pycairo是圖像處理庫cairo的一組Python捆綁。Cairo是一個用於繪制矢量圖形的2D圖形庫。矢量圖形很有趣,因為它們在調整大小或轉換時不會失去清晰度 。Pycairo是cairo的一組綁定,可用於從Python調用cairo命令
資源
Pycairo的GitHub庫是一個很好的資源,有關於安裝和使用的詳細說明。還有一個入門指南,其中有一個關於Pycairo的簡短教程。
庫:https://github.com/pygobject/pycairo指南:https://pycairo.readthedocs.io/en/latest/tutorial.html用法
使用Pycairo繪制線條、基本形狀和徑向梯度:

總結
有一些有用且免費的Python圖像處理庫可以使用,有的是眾所周知的,有的可能對你來說是新的,試著多去了解它們。

② python opencv怎麼去除圖像畸變

計算機視覺——使用OpenCV進行攝像機標定

攝像機標定程序中用到的OpenCV函數

使用OpenCV進行攝像機標定

攝像頭標定

攝像機標定(Cameracalibration)筆記

OPENCV的攝像機標定

OPENCV版本的攝像機標定

圖像畸變校正OPENCV

鏡頭桶形失真校正演算法

基​於​O​p​e​n​C​V​的​非​線​性​圖​像​畸​變​校​正​研​究

攝像機標定和圖像徑向畸變校正

圖像處理中消除相機透鏡畸變和視角變換

opencv鳥瞰圖變化實例

LearningOpenCV

關於圖像透射變換的一點總結

關於透視變換與標定的問題請教

PerspectiveTransform+CropiniOSwithOpenCV

code:

③ 前端:培訓機構出來的基本都能找到工作嗎

第一 在哪裡學習前端靠譜點??

我個人的經驗是不要去小機構,沒有保障,學習缺乏持續性,不知道哪天老闆就溜了,學習前端可以找大型的機構進行學習,穩定有保障啊。學習嘛,我們就得學個放心,以前我學前端在我們當地小縣城報了個小機構,裡面的老師水平一般,也沒學到多少東西,當時想先試聽他們的課程,他們老闆不願意,就報名進去學了,結果發現不是那麼回事,後來我就離開了那家機構,我表哥給我說了一個互聯網免費直播課,我去聽了,在那裡學會的。

第二 學前端去實體好還是去網路平台學習好?

首先還是我前邊說的那個,學前端去實體的話,可以去大型的連鎖教育機構,但是費用是非常的高的兩三萬,如果你經濟條件比較優越的話,可以去的。也可以在網路平台進行學習,一般七八千左右的支出吧,一般是晚上開課,不會耽誤白天的工作和學習,也有錄播提供。至於哪個好,各有優劣,這個沒法比較,無論是網上還是實體的,只要是正規的大機構都可以。

第三 好或者不好,可以去體驗一下,實踐得真知。

我個人是從網上的直播平台學會的這門技術,別的平台怎麼樣,我沒有去體驗過,沒有發言權,我聽的這個前端直播平台還行,每天晚上都有免費直播課,老師講的通俗易懂,很多自學的時候一直搞不明白的問題,聽聽老師講的,就感覺醍醐灌頂的感覺,想聽這個這個老師課的同學,可以進入他的前端教程資料裙:首先位於開頭的一組數字是:655,其次處於中間地帶的一組數字是:567,最後位於尾部的一組數字是:613,把以上三組數字按照先後順序組合起來即可。對前端感興趣又不知道何去何從的小夥伴,可以去聽一下,肯定有很多的收獲,畢竟是哥們實踐出來的,前人栽樹後人乘涼嘛。

④ 陳文的研究方向

l 計算力學演算法和軟體,包括徑向基函數無網格方法、微分求積法、結構動力學剛性問題演算法、彈性動力學和熱傳導反問題、邊界元、非線性矩陣計算、基於Python Scripting的符號-數值編程語言和環境等;研發振動和雜訊工程分析軟體。
l 軟物質(又被稱為「復雜流體」。例如,土壤、多孔岩體、膠體、薄膜、顆粒物質、泡沫、生命物質、聚合物熔液、液晶、石油等)復雜力學行為的分數階導數建模和理論,包括介觀尺度物理學原理,非常規統計(Levy統計、分數階布朗運動、伸展高斯分布等),超聲醫學圖像檢測的力學模擬,湍流的分數階導數和豪斯道夫導數的間歇性統計微分方程、雷諾方程建模、岩土力學本構模型、「反常」擴散。
l 水工結構模擬、損傷檢測、安全評估和修復技術。 Distinguished Fellow of ICCES (2014),第五屆中國僑界貢獻獎(創新人才)(2014)、南京市十大科技之星(2013)、江蘇省「333人才工程」第二層次(2013)、江蘇省政協委員(2013)、江蘇省特聘教授(重點資助,2012)、國家傑出青年科學基金(2011)、HumboldtResearchFellowshipfor Experienced Researchers (2009)、杜慶華工程計算方法獎(2009)、Australian Leadership Awards (ALA) Fellowship(2008)、教育部「新世紀優秀人才支持計劃」(2006)、JSPSResearch Fellowship Award (Japan, 1998-2000)、Motorola獎學金(1997)、Siemens獎學金(1995)、光華一等獎學金(1995);撰寫英文學術專著1部、中文學術專著3部,授權軟體著作權12項、發明專利3項、實用新型專利1項,申請發明專利6項;發表SCI論文130餘篇,SCI他人引用1300餘次,單篇他引最高120餘次。我們發表在Journal of Computational Physics,235:52-66的論文在該期刊2013年2月至2015年5月發表的所有1630篇論文中SCI引用數排名第一;發表在PhysicaA-Statistical Mechanics and its Applications, 388(21):4586-4592的論文在該期刊2009年至2014年6月發表的所有3386篇論文中SCI引用數排名第四;發表在Journal of Marine Science and Technology, 17(3):157-163的論文在該期刊2009年9月至2015年5月發表的所有528篇論文中SCI引用數排名第四;發表在Computers & Mathematics with Applications, 43(3-5):379-391的論文在該期刊2002年至2014年6月發表的所有5414篇論文中SCI引用數排名第六;發表在Engineering Analysis with Boundary Elements, 26(6):489-494的論文在該雜志2002年至2014年6月發表的所有1592篇論文中SCI引用數排名第十四;發表在Journal of the Acoustical Society of America, 115(6):1424-1430的論文在該雜志2004年至2014年6月發表的所有8034篇論文中SCI引用數排名第六十四。
有6年海外研究工作經歷,在十幾個國家參加過50餘次學術會議並有5次短期學術訪問;15個會議的國際學術委員會成員,1個海外國際會議的共同主席,10餘個國內外會議邀請報告和6個大會報告,4個國際和2個國內學術會議的組織者(細節看學術活動);在大學、國立研究所、工業研究所等研究機構的力學、工業產品設計、科學計算等不同學科單位工作(見簡歷),主持了18個和參與了7個應用基礎和工業應用研究項目;與不同學術背景的研究人員有廣泛的接觸,理解他們的思維方式和專業語言。但主要研究內容始終以應用力學為中心。這是因為力學是一個交叉型應用基礎學科,可以在很多不同技術領域發揮用武之地。2004年回國前的研究工作請點擊。

⑤ 哪位朋友能介紹一下支持向量機工具libsvm的用法

LIBSVM的簡單介紹 2006-09-20 15:59:48
大 中 小
1. LIBSVM 軟體包簡介
LIBSVM 是台灣大學林智仁(Chih-Jen Lin)博士等開發設計的一個操作簡單、易於使用、快速有效的通用SVM 軟體包,可以解決分類問題(包括C- SVC、n - SVC )、回歸問題(包括e - SVR、n - SVR )以及分布估計(one-class-SVM )等問題,提供了線性、多項式、徑向基和S形函數四種常用的核函數供選擇,可以有效地解決多類問題、交叉驗證選擇參數、對不平衡樣本加權、多類問題的概率估計等。LIBSVM 是一個開源的軟體包,需要者都可以免費的從作者的個人主頁http://www.csie.ntu.e.tw/~cjlin/
處獲得。他不僅提供了LIBSVM的C++語言的演算法源代碼,還提供了Python、java、R、MATLAB、Perl、Ruby、LabVIEW以及C#.net 等各種語言的介面,可以方便的在Windows 或UNIX 平台下使用。另外還提供了WINDOWS 平台下的可視化操作工具SVM-toy,並且在進行模型參數選擇時可以繪制出交叉驗證精度的等高線圖。
2. LIBSVM 使用方法簡介
LibSVM是以源代碼和可執行文件兩種方式給出的。如果是Windows系列操作系統,可以直接使用軟體包提供的程序,也可以進行修改編譯;如果是Unix類系統,必須自己編譯。
LIBSVM 在給出源代碼的同時還提供了Windows操作系統下的可執行文件,包括:進行支持向量機訓練的svmtrain.exe;根據已獲得的支持向量機模型對數據集進行預測的svmpredict.exe;以及對訓練數據與測試數據進行簡單縮放操作的svmscale.exe。它們都可以直接在DOS 環境中使用。如果下載的包中只有C++的源代碼,則也可以自己在VC等軟體上編譯生成可執行文件。

3. LIBSVM 使用的一般步驟是:
1) 按照LIBSVM軟體包所要求的格式准備數據集;
2) 對數據進行簡單的縮放操作;
3) 考慮選用RBF 核函數;
4) 採用交叉驗證選擇最佳參數C與g ;
5) 採用最佳參數C與g 對整個訓練集進行訓練獲取支持向量機模型;
6) 利用獲取的模型進行測試與預測。

4. LIBSVM使用的數據格式
1)訓練數據和檢驗數據文件格式如下:
<label> <index1>:<value1> <index2>:<value2> ...
其中<label> 是訓練數據集的目標值,對於分類,它是標識某類的整數(支持多個類);對於回歸,是任意實數。<index> 是以1開始的整數,可以是不連續的;<value>為實數,也就是我們常說的自變數。檢驗數據文件中的label只用於計算準確度或誤差,如果它是未知的,只需用一個數填寫這一欄,也可以空著不填。
在程序包中,還包括有一個訓練數據實例:heart_scale,方便參考數據文件格式以及練習使用軟體。可以編寫小程序,將自己常用的數據格式轉換成這種格式

2)Svmtrain和Svmpredict的用法
LIBSVM軟體提供的各種功能都是DOS命令執行方式。我們主要用到兩個程序,svmtrain(訓練建模)和svmpredict(使用已有的模型進行預測),下面分別對這兩個程序的使用方法、各參數的意義以及設置方法做一個簡單介紹:
(1)Svmtrain的用法:
svmtrain [options] training_set_file [model_file]
Options:可用的選項即表示的涵義如下
-s svm類型:SVM設置類型(默認0)
0 -- C-SVC
1 --v-SVC
2 – 一類SVM
3 -- e -SVR
4 -- v-SVR
-t 核函數類型:核函數設置類型(默認2)
0 – 線性:u'v
1 – 多項式:(r*u'v + coef0)^degree
2 – RBF函數:exp(-r|u-v|^2)
3 –sigmoid:tanh(r*u'v + coef0)
-d degree:核函數中的degree設置(默認3)
-g 函數設置(默認1/ k)r(gama):核函數中的
-r coef0:核函數中的coef0設置(默認0)
-c cost:設置C-SVC, -SVR的參數(默認1)-SVR和
- SVR的參數(默認0.5)-SVC,一類SVM和-n nu:設置
-SVR-p e:設置的值(默認0.1)中損失函數
-m cachesize:設置cache內存大小,以MB為單位(默認40)
-e :設置允許的終止判據(默認0.001)
-h shrinking:是否使用啟發式,0或1(默認1)
-wi C(C-SVC中的C)(默認1)weight:設置第幾類的參數C為weight
-v n: n-fold交互檢驗模式
其中-g選項中的k是指輸入數據中的屬性數。option -v 隨機地將數據剖分為n部分並計算交互檢驗准確度和均方根誤差。以上這些參數設置可以按照SVM的類型和核函數所支持的參數進行任意組合,如果設置的參數在函數或SVM類型中沒有也不會產生影響,程序不會接受該參數;如果應有的參數設置不正確,參數將採用默認值。training_set_file是要進行訓練的數據集;model_file是訓練結束後產生的模型文件,文件中包括支持向量樣本數、支持向量樣本以及lagrange系數等必須的參數;該參數如果不設置將採用默認的文件名,也可以設置成自己慣用的文件名。
(2)Svmpredict的用法:
svmpredict test_file model_file output_file
model_file 是由svmtrain產生的模型文件;test_file是要進行預測的數據文件;Output_file是svmpredict的輸出文件。svm-predict沒有其它的選項。
下面是具體的使用例子
svmtrain -s 0 -c 1000 -t 1 -g 1 -r 1 -d 3 data_file
訓練一個由多項式核(u'v+1)^3和C=1000組成的分類器。
svmtrain -s 1 -n 0.1 -t 2 -g 0.5 -e 0.00001 data_file =-SVM (在RBF核函數exp(-0.5|u-v|^2)和終止允許限0.00001的條件下,訓練一個 0.1)分類器。 svmtrain -s 3 -p 0.1 -t 0 -c 10 data_file =以線性核函數u'v和C=10及損失函數 0.1求解SVM回歸。

⑥ 人工智慧是學習什麼

1、學習並掌握一些數學知識

高等數學是基礎中的基礎,一切理工科都需要這個打底,數據挖掘、人工智慧、模式識別此類跟數據打交道的又尤其需要多元微積分運算基礎。

線性代數很重要,一般來說線性模型是你最先要考慮的模型,加上很可能要處理多維數據,你需要用線性代數來簡潔清晰的描述問題,為分析求解奠定基礎。

概率論、數理統計、隨機過程更是少不了,涉及數據的問題,不確定性幾乎是不可避免的,引入隨機變數順理成章,相關理論、方法、模型非常豐富。很多機器學習的演算法都是建立在概率論和統計學的基礎上的,比如貝葉斯分類器、高斯隱馬爾可夫鏈。

再就是優化理論與演算法,除非你的問題是像二元一次方程求根那樣有現成的公式,否則你將不得不面對各種看起來無解但是要解的問題,優化將是你的GPS為你指路。

以上這些知識打底,就可以開拔了,針對具體應用再補充相關的知識與理論,比如說一些我覺得有幫助的是數值計算、圖論、拓撲,更理論一點的還有實/復分析、測度論,偏工程類一點的還有信號處理、數據結構。

2、掌握經典機器學習理論和演算法

如果有時間可以為自己建立一個機器學習的知識圖譜,並爭取掌握每一個經典的機器學習理論和演算法,我簡單地總結如下:

1) 回歸演算法:常見的回歸演算法包括最小二乘法(OrdinaryLeast Square),邏輯回歸(Logistic Regression),逐步式回歸(Stepwise Regression),多元自適應回歸樣條(MultivariateAdaptive Regression Splines)以及本地散點平滑估計(Locally Estimated Scatterplot Smoothing);

2) 基於實例的演算法:常見的演算法包括 k-Nearest Neighbor(KNN), 學習矢量量化(Learning Vector Quantization, LVQ),以及自組織映射演算法(Self-Organizing Map , SOM);

3) 基於正則化方法:常見的演算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及彈性網路(Elastic Net);

4) 決策樹學習:常見的演算法包括:分類及回歸樹(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 隨機森林(Random Forest), 多元自適應回歸樣條(MARS)以及梯度推進機(Gradient Boosting Machine, GBM);

5) 基於貝葉斯方法:常見演算法包括:樸素貝葉斯演算法,平均單依賴估計(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);

6) 基於核的演算法:常見的演算法包括支持向量機(SupportVector Machine, SVM), 徑向基函數(Radial Basis Function ,RBF), 以及線性判別分析(Linear Discriminate Analysis ,LDA)等;

7) 聚類演算法:常見的聚類演算法包括 k-Means演算法以及期望最大化演算法(Expectation Maximization, EM);

8) 基於關聯規則學習:常見演算法包括 Apriori演算法和Eclat演算法等;

9) 人工神經網路:重要的人工神經網路演算法包括:感知器神經網路(PerceptronNeural Network), 反向傳遞(Back Propagation), Hopfield網路,自組織映射(Self-OrganizingMap, SOM)。學習矢量量化(Learning Vector Quantization, LVQ);

10) 深度學習:常見的深度學習演算法包括:受限波爾茲曼機(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷積網路(Convolutional Network), 堆棧式自動編碼器(Stacked Auto-encoders);

11) 降低維度的演算法:常見的演算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回歸(Partial Least Square Regression,PLS), Sammon映射,多維尺度(Multi-Dimensional Scaling, MDS), 投影追蹤(ProjectionPursuit)等;

12) 集成演算法:常見的演算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆疊泛化(Stacked Generalization, Blending),梯度推進機(GradientBoosting Machine, GBM),隨機森林(Random Forest)。

3、掌握一種編程工具,比如Python
一方面Python是腳本語言,簡便,拿個記事本就能寫,寫完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab雖然包也多,但是效率是這四個裡面最低的。

4、了解行業最新動態和研究成果,比如各大牛的經典論文、博客、讀書筆記、微博微信等媒體資訊。

5、買一個GPU,找一個開源框架,自己多動手訓練深度神經網路,多動手寫寫代碼,多做一些與人工智慧相關的項目。

6、選擇自己感興趣或者工作相關的一個領域深入下去
人工智慧有很多方向,比如NLP、語音識別、計算機視覺等等,生命有限,必須得選一個方向深入的鑽研下去,這樣才能成為人工智慧領域的大牛,有所成就。

根據網路給的定義,人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的還能的理論、方法、技術及應用系統的一門新的技術科學。
網路關於人工智慧的定義詳解中說道:人工智慧是計算機的一個分支,二十世紀七十年代以來被稱為世界三大尖端技術之一(空間技術、能源技術、人工智慧)。也被認為是二十一世紀三大尖端技術(基因工程、納米科學、人工智慧)之一。這是因為近三十年來它獲得了迅速的發展,在很多學科領域都獲得了廣泛應用,並取得了豐碩的成果,人工智慧已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統。
綜上,從定義上講,人工智慧是一項技術。

⑦ python的seaborn.kdeplot有什麼用

kde(kernel density estimation)是核密度估計。核的作用是根據離散采樣,估計連續密度分布。
如果原始采樣是《陰陽師》里的式神,那麼kernel(核函數)就相當於御魂。

假設現在有一系列離散變數X = [4, 5, 5, 6, 12, 14, 15, 15, 16, 17],可見5和15的概率密度應該要高一些,但具體有多高呢?有沒有三四層樓那麼高,有沒有華萊士高?如果要估計的是沒有出現過的3呢?這就要自己判斷了。

核函數就是給空間的每個離散點都套上一個連續分布。最簡單的核函數是Parzen窗,類似一個方波:

這時候單個離散點就可以變成區間,空間或者高維空間下的超立方,實質上是進行了升維。

設h=4,則3的概率密度為:

(只有4對應的核函數為1,其他皆為0)

kernel是非負實值對稱可積函數,表示為K,且一本滿足:

這樣才能保證cdf仍為1。

實際上應用最多的是高斯核函數(Gaussian Kernel),也就是標准正態分布。所謂核密度估計就是把所有離散點的核函數加起來,得到整體的概率密度分布。核密度估計在很多機器學習演算法中都有應用,比如K近鄰、K平均等。

在支持向量機里,也有「核」的概念,同樣也是給數據升維,最常用的還是高斯核函數,也叫徑向基函數(Radial Basis Funtion)。
seaborn.kdeplot內置了多種kerne,總有一款適合你。

閱讀全文

與Python做徑向圖相關的資料

熱點內容
python最常用模塊 瀏覽:182
溫州直播系統源碼 瀏覽:110
程序員在上海買房 瀏覽:382
生活解壓游戲機 瀏覽:907
季羨林pdf 瀏覽:716
php支付寶介面下載 瀏覽:814
ipad怎麼把app資源庫關了 瀏覽:301
量柱比前一天多源碼 瀏覽:416
電子書app怎麼上傳 瀏覽:66
國家反詐中心app注冊怎麼開啟 瀏覽:804
全波差分傅里葉演算法窗長 瀏覽:41
程序員如何講自己做過的項目 瀏覽:7
程序員要看的書頸椎 瀏覽:946
php文章cms 瀏覽:553
CSS權威指南第三版PDF 瀏覽:496
android怎麼搭建框架 瀏覽:184
正宗溯源碼大燕條一克一般多少錢 瀏覽:917
電腦感染exe文件夾 瀏覽:916
wpsppt怎麼轉pdf格式 瀏覽:88
騰訊文檔在線編輯怎麼添加密碼 瀏覽:880