① python如何實現堆棧與隊列的實例詳解
python實現堆棧,可先將Stack類寫入文件stack.py,在其它程序文件中使用from stack import Stack,然後就可以使用堆棧了。
② python語言基礎知識是什麼
如下:
一、Python語言基礎
Python核心:Python數據基本運算、語句、容器、函數
Python 面向對象編程:OOA、OOD、OOP、天龍八部技能系統框架 設計 Python高級:模塊、包、函數式編程、文件。
二、Python高級軟體開發技術
Linux操作系統 :Linux常用命令、編輯工具、vim/Pycharm
數據結構與演算法 :鏈表、棧和隊列、樹和二叉樹、查找排序
IO網路編程:文件操作、位元組流讀寫、網路協議、套接 字、TCP/UDP
並發編程:多進程、進程池、進程通信、多線程、線程鎖、多任務並發、IO模型、協程
Python 正則表達式:正則表達式、貪婪模和非貪婪模式、re模塊
MySQL基礎:資料庫應用、SQL語言、Mysql增刪改查、 pymysql模塊
三、Python Web全棧式工程師
HTML/CSS HTML5標簽,CSS選擇器,CSS樣式屬性以 及值
Java :JS流程式控制制,DOM,BOM,JQuery API
MySQL高級:MySQL索引、事務、引擎、優化、pymysql 模塊使用
Python Django 框架:Django、模板、視圖、模型、請求對象等
Ajax Ajax,:JSON, Jquery對Ajax的支持, 跨域訪問
四、Python 爬蟲
Redis:Redis、string、hash、list、set、zset、 Python與MySQL和Redis結合
爬蟲、HTTP、BeautifulSoup,XPath,Scrapy其實無論是學習什麼知識,都要有一個對學習目標的清楚認識。 只有這樣才能朝著目標持續前進,少走彎路,從學習中得到不斷的提升,享受python學習計劃的過程。
③ python 如何用單向循環鏈表實現堆棧
Node沒什麼問題,就是變數定義的時候是一個下劃線而不是兩個
Stack這里有點問題,
(不知道你這里為啥需要做成一個循環的鏈表,不過不管了)
首先你得定義一個head和一個tail,這樣的話才能把tail和head連接形成一個循環
初始化Stack的話把head和tail都設置成None表示這是個空的stack
push的話看你喜歡這么寫了,比較喜歡的是把push進去的Node作為新的head,然後修改一下self._head為新Node,然後修改新Node的next為老的head,再連接一下Tail和Head便可,這樣就省掉一些循環
pop的話就加一些判定好了,首先看Head是不是None,如果是就說明Stack是空的。如果發現Tail和Head都是同一個的話就說明Stack里就一項了,提取完Head之後就設置Stack為空吧。然後先提取Head,然後讀取Head後面的那一個Node並且設置為新的Head,然後再連接一下Tail和Head便可
附上代碼供參考.
classNode:
def__init__(self,newData):
self._data=newData
self._next=None
defgetData(self):
returnself._data
defgetNext(self):
returnself._next
defsetData(self,newData):
self._data=newData
defsetNext(self,newNode):
self._next=newNode
classStack:
def__init__(self):
self._head=None
self._tail=None
defpush(self,data):
print'Push',data,'intostack'
new=Node(data)
cur=self._head
end=self._tail
ifcurisNone:
self._head=new
new.setNext(new)
self._tail=new
else:
new.setNext(self._head)
self._head=new
self._tail.setNext(new)
defpop(self):
ifself._headisnotNone:
cur=self._head
print'pop',cur.getData(),'outofstack'
ifcur.getNext()isnotcur:
self._head=cur.getNext()
self._tail.setNext(self._head)
else:
self._head=None
self._tail=None
else:
print'Stackisempty'
my=Stack()
foriinrange(5):
my.push(i)
foriinrange(6):
my.pop()
④ 有哪些用 Python 語言講演算法和數據結構的書
1.Python數據結構篇
數據結構篇主要是閱讀[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [該網址鏈接可能會比較慢]時寫下的閱讀記錄,當然,也結合了部分[演算法導論](Introction to Algorithms)中的內容,此外還有不少wikipedia上的內容,所以內容比較多,可能有點雜亂。這部分主要是介紹了如何使用Python實現常用的一些數據結構,例如堆棧、隊列、二叉樹等等,也有Python內置的數據結構性能的分析,同時還包括了搜索和排序(在演算法設計篇中會有更加詳細的介紹)的簡單總結。每篇文章都有實現代碼,內容比較多,簡單演算法一般是大致介紹下思想及演算法流程,復雜的演算法會給出各種圖示和代碼實現詳細介紹。
**這一部分是下面演算法設計篇的前篇,如果數據結構還不錯的可以直接看演算法設計篇,遇到問題可以回來看數據結構篇中的某個具體內容充電一下,我個人認為直接讀演算法設計篇比較好,因為大家時間也都比較寶貴,如果你會來讀這些文章說明你肯定有一定基礎了,後面的演算法設計篇中更多的是思想,這里更多的是代碼而已,嘿嘿。**
(1)[搜索](Python Data Structures)
簡述順序查找和二分查找,詳述Hash查找(hash函數的設計以及如何避免沖突)
(2)[排序](Python Data Structures)
簡述各種排序演算法的思想以及它的圖示和實現
(3)[數據結構](Python Data Structures)
簡述Python內置數據結構的性能分析和實現常用的數據結構:棧、隊列和二叉堆
(4)[樹總結](Python Data Structures)
簡述二叉樹,詳述二叉搜索樹和AVL樹的思想和實現
2.Python演算法設計篇
演算法設計篇主要是閱讀[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**點擊鏈接可進入Springer免費下載原書電子版**]之後寫下的讀書總結,原書大部分內容結合了經典書籍[演算法導論](Introction to Algorithms),內容更加細致深入,主要是介紹了各種常用的演算法設計思想,以及如何使用Python高效巧妙地實現這些演算法,這里有別於前面的數據結構篇,部分演算法例如排序就不會詳細介紹它的實現細節,而是側重於它內在的演算法思想。這部分使用了一些與數據結構有關的第三方模塊,因為這篇的重點是演算法的思想以及實現,所以並沒有去重新實現每個數據結構,但是在介紹演算法的同時會分析Python內置數據結構以及第三方數據結構模塊的優缺點,也就意味著該篇比前面都要難不少,但是我想我的介紹應該還算簡單明了,因為我用的都是比較朴實的語言,並沒有像演算法導論一樣列出一堆性質和定理,主要是對著某個問題一步步思考然後演算法就出來了,嘿嘿,除此之外,裡面還有很多關於python開發的內容,精彩真的不容錯過!
這里每篇文章都有實現代碼,但是代碼我一般都不會分析,更多地是分析演算法思想,所以內容都比較多,即便如此也沒有包括原書對應章節的所有內容,因為內容實在太豐富了,所以我只是選擇經典的演算法實例來介紹演算法核心思想,除此之外,還有不少內容是原書沒有的,部分是來自演算法導論,部分是來自我自己的感悟,嘻嘻。該篇對於大神們來說是小菜,請一笑而過,對於菜鳥們來說可能有點難啃,所以最適合的是和我水平差不多的,對各個演算法都有所了解但是理解還不算深刻的半桶水的程序猿,嘿嘿。
本篇的順序按照原書[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章節來安排的(章節標題部分相同部分不同喲),為了節省時間以及保持原著的原滋原味,部分內容(一般是比較難以翻譯和理解的內容)直接摘自原著英文內容。
**1.你也許覺得很多內容你都知道嘛,沒有看的必要,其實如果是我的話我也會這么想,但是如果只是歸納一個演算法有哪些步驟,那這個總結也就沒有意義了,我覺得這個總結的亮點在於想辦法說清楚一個演算法是怎麼想出來的,有哪些需要注意的,如何進行優化的等等,採用問答式的方式讓讀者和我一起來想出某個問題的解,每篇文章之後都還有一兩道小題練手喲**
**2.你也許還會說演算法導論不是既權威又全面么,基本上每個演算法都還有詳細的證明呢,讀演算法導論豈不更好些,當然,你如果想讀演算法導論的話我不攔著你,讀完了感覺自己整個人都不好了別怪小弟沒有提醒你喲,嘻嘻嘻,左一個性質右一個定理實在不適合演算法科普的啦,沒有多少人能夠堅持讀完的。但是碼農與蛇的故事內容不多喲,呵呵呵**
**3.如果你細讀本系列的話我保證你會有不少收獲的,需要看演算法導論哪個部分的地方我會給出提示的,嘿嘿。溫馨提示,前面三節內容都是介紹基礎知識,所以精彩內容從第4節開始喲,么么噠 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introction](Python Algorithms)
本節主要是對原書中的內容做些簡單介紹,說明演算法的重要性以及各章節的內容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本節主要介紹了三個內容:演算法漸近運行時間的表示方法、六條演算法性能評估的經驗以及Python中樹和圖的實現方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原書主要介紹了一些基礎數學,例如排列組合以及遞歸循環等,但是本節只重點介紹計算演算法的運行時間的三種方法
(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)
**本節主要介紹演算法設計的三個核心知識:Inction(推導)、Recursion(遞歸)和Rection(規約),這是原書的重點和難點部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本節主要介紹圖的遍歷演算法BFS和DFS,以及對拓撲排序的另一種解法和尋找圖的(強)連通分量的演算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本節主要介紹分治法策略,提到了樹形問題的平衡性以及基於分治策略的排序演算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本節主要通過幾個例子來介紹貪心策略,主要包括背包問題、哈夫曼編碼和最小生成樹等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本節主要結合一些經典的動規問題介紹動態規劃的備忘錄法和迭代法這兩種實現方式,並對這兩種方式進行對比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)
⑤ python的回收機制是什麼
Python中的垃圾回收機制總體上有三種,
引用計數
Python語言默認採用的垃圾收集機制是『引用計數法 Reference Counting』,該演算法最早George E. Collins在1960的時候首次提出,50年後的今天,該演算法依然被很多編程語言使用,『引用計數法』的原理是:每個對象維護一個ob_ref欄位,用來記錄該對象當前被引用的次數,每當新的引用指向該對象時,它的引用計數ob_ref加1,每當該對象的引用失效時計數ob_ref減1,一旦對象的引用計數為0,該對象立即被回收,對象佔用的內存空間將被釋放。它的缺點是需要額外的空間維護引用計數,這個問題是其次的,不過最主要的問題是它不能解決對象的「循環引用」,因此,也有很多語言比如Java並沒有採用該演算法做來垃圾的收集機制。
在上圖中,我們把小黑圈視為全局變數,也就是把它作為root object,從小黑圈出發,對象1可直達,那麼它將被標記,對象2、3可間接到達也會被標記,而4和5不可達,那麼1、2、3就是活動對象,4和5是非活動對象會被GC回收。
標記清除演算法作為Python的輔助垃圾收集技術主要處理的是一些容器對象,比如list、dict、tuple,instance等,因為對於字元串、數值對象是不可能造成循環引用問題。Python使用一個雙向鏈表將這些容器對象組織起來。不過,這種簡單粗暴的標記清除演算法也有明顯的缺點:清除非活動的對象前它必須順序掃描整個堆內存,哪怕只剩下小部分活動對象也要掃描所有對象。
分代回收
分代回收是一種以空間換時間的操作方式,Python將內存根據對象的存活時間劃分為不同的集合,每個集合稱為一個代,Python將內存分為了3「代」,分別為年輕代(第0代)、中年代(第1代)、老年代(第2代),他們對應的是3個鏈表,它們的垃圾收集頻率與對象的存活時間的增大而減小。新創建的對象都會分配在年輕代,年輕代鏈表的總數達到上限時,Python垃圾收集機制就會被觸發,把那些可以被回收的對象回收掉,而那些不會回收的對象就會被移到中年代去,依此類推,老年代中的對象是存活時間最久的對象,甚至是存活於整個系統的生命周期內。同時,分代回收是建立在標記清除技術基礎之上。分代回收同樣作為Python的輔助垃圾收集技術處理那些容器對象。
Python垃圾回收機制--完美講解! 東皇Amrzs
Python中的垃圾回收機制
⑥ python實現堆棧與隊列的方法
python實現堆棧與隊列的方法
本文實例講述了python實現堆棧與隊列的方法。分享給大家供大家參考。具體分析如下:
1、python實現堆棧,可先將Stack類寫入文件stack.py,在其它程序文件中使用from stack import Stack,然後就可以使用堆棧了。
stack.py的程序:
代碼如下:class Stack():
def __init__(self,size):
self.size=size;
self.stack=[];
self.top=-1;
def push(self,ele): #入棧之前檢查棧是否已滿
if self.isfull():
raise exception("out of range");
else:
self.stack.append(ele);
self.top=self.top+1;
def pop(self): # 出棧之前檢查棧是否為空
if self.isempty():
raise exception("stack is empty");
else:
self.top=self.top-1;
return self.stack.pop();
def isfull(self):
return self.top+1==self.size;
def isempty(self):
return self.top==-1;
再寫一個程序文件,stacktest.py,使用棧,內容如下:
代碼如下:#!/usr/bin/python
from stack import Stack
s=Stack(20);
for i in range(3):
s.push(i);
s.pop()
print s.isempty();
2、python 實現隊列:
復制代碼代碼如下:class Queue():
def __init__(self,size):
self.size=size;
self.front=-1;
self.rear=-1;
self.queue=[];
def enqueue(self,ele): #入隊操作
if self.isfull():
raise exception("queue is full");
else:
self.queue.append(ele);
self.rear=self.rear+1;
def dequeue(self): #出隊操作
if self.isempty():
raise exception("queue is empty");
else:
self.front=self.front+1;
return self.queue[self.front];
def isfull(self):
return self.rear-self.front+1==self.size;
def isempty(self):
return self.front==self.rear;
q=Queue(10);
for i in range(3):
q.enqueue(i);
print q.dequeue();
print q.isempty();
希望本文所述對大家的Python程序設計有所幫助。
⑦ python中的數據結構分析
1.Python數據結構篇
數據結構篇主要是閱讀[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [該網址鏈接可能會比較慢]時寫下的閱讀記錄,當然,也結合了部分[演算法導論](Introction to Algorithms)
中的內容,此外還有不少wikipedia上的內容,所以內容比較多,可能有點雜亂。這部分主要是介紹了如何使用Python實現常用的一些數據結構,例
如堆棧、隊列、二叉樹等等,也有Python內置的數據結構性能的分析,同時還包括了搜索和排序(在演算法設計篇中會有更加詳細的介紹)的簡單總結。每篇文
章都有實現代碼,內容比較多,簡單演算法一般是大致介紹下思想及演算法流程,復雜的演算法會給出各種圖示和代碼實現詳細介紹。
**這一部分是下
面演算法設計篇的前篇,如果數據結構還不錯的可以直接看演算法設計篇,遇到問題可以回來看數據結構篇中的某個具體內容充電一下,我個人認為直接讀演算法設計篇比
較好,因為大家時間也都比較寶貴,如果你會來讀這些文章說明你肯定有一定基礎了,後面的演算法設計篇中更多的是思想,這里更多的是代碼而已,嘿嘿。**
(1)[搜索](Python Data Structures)
簡述順序查找和二分查找,詳述Hash查找(hash函數的設計以及如何避免沖突)
(2)[排序](Python Data Structures)
簡述各種排序演算法的思想以及它的圖示和實現
(3)[數據結構](Python Data Structures)
簡述Python內置數據結構的性能分析和實現常用的數據結構:棧、隊列和二叉堆
(4)[樹總結](Python Data Structures)
簡述二叉樹,詳述二叉搜索樹和AVL樹的思想和實現
2.Python演算法設計篇
演算法設計篇主要是閱讀[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**點擊鏈接可進入Springer免費下載原書電子版**]之後寫下的讀書總結,原書大部分內容結合了經典書籍[演算法導論](Introction to Algorithms),
內容更加細致深入,主要是介紹了各種常用的演算法設計思想,以及如何使用Python高效巧妙地實現這些演算法,這里有別於前面的數據結構篇,部分演算法例如排
序就不會詳細介紹它的實現細節,而是側重於它內在的演算法思想。這部分使用了一些與數據結構有關的第三方模塊,因為這篇的重點是演算法的思想以及實現,所以並
沒有去重新實現每個數據結構,但是在介紹演算法的同時會分析Python內置數據結構以及第三方數據結構模塊的優缺點,也就意味著該篇比前面都要難不少,但
是我想我的介紹應該還算簡單明了,因為我用的都是比較朴實的語言,並沒有像演算法導論一樣列出一堆性質和定理,主要是對著某個問題一步步思考然後演算法就出來
了,嘿嘿,除此之外,裡面還有很多關於python開發的內容,精彩真的不容錯過!
這里每篇文章都有實現代碼,但是代碼我一般都不會分
析,更多地是分析演算法思想,所以內容都比較多,即便如此也沒有包括原書對應章節的所有內容,因為內容實在太豐富了,所以我只是選擇經典的演算法實例來介紹算
法核心思想,除此之外,還有不少內容是原書沒有的,部分是來自演算法導論,部分是來自我自己的感悟,嘻嘻。該篇對於大神們來說是小菜,請一笑而過,對於菜鳥
們來說可能有點難啃,所以最適合的是和我水平差不多的,對各個演算法都有所了解但是理解還不算深刻的半桶水的程序猿,嘿嘿。
本篇的順序按照原書[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章節來安排的(章節標題部分相同部分不同喲),為了節省時間以及保持原著的原滋原味,部分內容(一般是比較難以翻譯和理解的內容)直接摘自原著英文內容。
**1.
你也許覺得很多內容你都知道嘛,沒有看的必要,其實如果是我的話我也會這么想,但是如果只是歸納一個演算法有哪些步驟,那這個總結也就沒有意義了,我覺得這
個總結的亮點在於想辦法說清楚一個演算法是怎麼想出來的,有哪些需要注意的,如何進行優化的等等,採用問答式的方式讓讀者和我一起來想出某個問題的解,每篇
文章之後都還有一兩道小題練手喲**
**2.你也許還會說演算法導論不是既權威又全面么,基本上每個演算法都還有詳細的證明呢,讀演算法導論豈
不更好些,當然,你如果想讀演算法導論的話我不攔著你,讀完了感覺自己整個人都不好了別怪小弟沒有提醒你喲,嘻嘻嘻,左一個性質右一個定理實在不適合演算法科
普的啦,沒有多少人能夠堅持讀完的。但是碼農與蛇的故事內容不多喲,呵呵呵**
**3.如果你細讀本系列的話我保證你會有不少收獲的,需要看演算法導論哪個部分的地方我會給出提示的,嘿嘿。溫馨提示,前面三節內容都是介紹基礎知識,所以精彩內容從第4節開始喲,么么噠 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introction](Python Algorithms)
本節主要是對原書中的內容做些簡單介紹,說明演算法的重要性以及各章節的內容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本節主要介紹了三個內容:演算法漸近運行時間的表示方法、六條演算法性能評估的經驗以及Python中樹和圖的實現方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原書主要介紹了一些基礎數學,例如排列組合以及遞歸循環等,但是本節只重點介紹計算演算法的運行時間的三種方法
(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)
**本節主要介紹演算法設計的三個核心知識:Inction(推導)、Recursion(遞歸)和Rection(規約),這是原書的重點和難點部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本節主要介紹圖的遍歷演算法BFS和DFS,以及對拓撲排序的另一種解法和尋找圖的(強)連通分量的演算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本節主要介紹分治法策略,提到了樹形問題的平衡性以及基於分治策略的排序演算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本節主要通過幾個例子來介紹貪心策略,主要包括背包問題、哈夫曼編碼和最小生成樹等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本節主要結合一些經典的動規問題介紹動態規劃的備忘錄法和迭代法這兩種實現方式,並對這兩種方式進行對比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)
**本節主要介紹圖演算法中的各種最短路徑演算法,從不同的角度揭示它們的內核以及它們的異同**
⑧ python列表可存儲的位元組數有沒有限制,是屬於鏈表還是棧的數據結構
Python中的list 屬於動態順序表(dynamic array), 不屬於鏈表.至於能存多少東西就不太清楚了.
而我們常說的鏈表在Python中是沒有的, 但是有使用鏈表作為底層邏輯的deque.
⑨ Python的尾遞歸
原因很多人的都知道,讓我們先回顧一下函數調用的大概過程:
1)調用開始前,調用方(或函數本身)會往棧上壓相關的數據,參數,返回地址,局部變數等。
2)執行函數。
3)清理棧上相關的數據,返回。
因此,在函數 A 執行的時候,如果在第二步中,它又調用了另一個函數 B,B 又調用 C.... 棧就會不斷地增長不斷地裝入數據,當這個調用鏈很深的時候,棧很容易就滿 了,這就是一般遞歸函數所容易面臨的大問題。
而尾遞歸在某些語言的實現上,能避免上述所說的問題,注意是某些語言上,尾遞歸本身並不能消除函數調用棧過長的問題,那什麼是尾遞歸呢?在上面寫的一般遞歸函數 func() 中,我們可以看到,func(n) 是依賴於 func(n-1) 的,func(n) 只有在得到 func(n-1) 的結果之後,才能計算它自己的返回值,因此理論上,在 func(n-1) 返回之前,func(n),不能結束返回。因此func(n)就必須保留它在棧上的數據,直到func(n-1)先返回,而尾遞歸的實現則可以在編譯器的幫助下,消除這個限制
⑩ Python中如何實現基本的數據結構
要學的,python只是繼承了list,dict,set等常用的數據結構。一般情況只要將幾種內置對象組合就可以。如果你要實現復雜的數據結構還是要自己實現。