『壹』 python之安裝和環境配置
python的下載
1.可以去python官網下載,https://www.python.org/
2.下載完成後,安裝即可。
python的檢測
1.打開開始-運行-cmd(快捷鍵win+R)。 如果是mac,打開使用工具-終端。
2.在終端里輸入python,以下畫面就是進入python了,表示安裝成功。
相關推薦:《Python視頻教程》
python環境變數
這里是win10舉例
右鍵我的電腦-屬性-高級
2.選擇環境變數---在系統變數里找到Path---然後雙擊,進去之後新建,將python的路徑添加進去即可。
環境變數設置好之後cmd運行python就方便了許多。(不太明白的可以去網路搜,這些安裝改環境變數網上有很多,就不多說廢話了)
補充:如果安裝了多個python版本,在cmd里運行python,一般電腦默認優先運行先安裝的。
解決方法,可以給python重新命名,然後再設置環境變數,這樣在cmd里運行即可。例如:python2和python3運行cmd直接輸入python2或者python3即可。
3.變數名
可以由字母/數字/下劃線組成
ps:~數字不能開頭
~不能是關鍵字(and、as、assert、break、class、continue、def、del、elif、else、except、exec、finally、for、from、global、if、import等等)
~最好不要和python內置的東西重復
~變數名最好寫的有意義,一看名字就能看懂是什麼。 比如: user_name user_age user_id
『貳』 自學Python需要怎樣的基礎和准備
1、有較強的邏輯思維能力
是的,幾乎所有編程語言的學習都離不開較強的邏輯思維能力,因為編程語言是人與計算機的對話,任何歧義和差錯都會影響最終的運行效果;
2、有較強的數理專業背景
學習Python最理想的專業有數學、統計學、物理學、計算機科學等專業,因為Python語言所操作的對象很可能是大數據收集與分析,以及AI開發領域,有以上的學科背景會對今後的發展有很好的優勢;
3、有豐富的運維經驗
可能很多學計算機的同學在畢業之後從事了伺服器、後台管理的運維工作,這既有優勢、也有劣勢。所謂優勢就是有現成的成品擺在你面前,你在做運維的過程中會對產品開發理解更加充分,然而劣勢就在於對自身的技術提高幫助可能比較有限。這時學Python,更在於從運維轉開發,這也是對自己職業生涯的一種新規劃;
4、從事web全棧開發工作
以前開發web,Java是主角,但如今越來越多的web開發開始青睞於Python,究其原因其實也是因為網路數據量的日益龐大以及人工智慧的普及,所以精通Python語言對於從事web全棧開發將有積極的影響。
『叄』 學習Python需要哪些准備
小蝸這里整理了一份Python全棧開發系統的學習路線,每個階段所要掌握的知識都已列出,題主可參考這份大綱來進行學習規劃;
第一階段:專業核心基礎
階段目標:
1. 熟練掌握Python的開發環境與編程核心知識
2. 熟練運用Python面向對象知識進行程序開發
3. 對Python的核心庫和組件有深入理解
4. 熟練應用SQL語句進行資料庫常用操作
6. 熟練使用MySQL,掌握資料庫高級操作
7. 能綜合運用所學知識完成項目
知識點:
Python編程基礎、Python面向對象、Python高級進階、MySQL資料庫、Linux操作系統。
1、Python編程基礎,語法規則,函數與參數,數據類型,模塊與包,文件IO,培養扎實的Python編程基本功,同時對Python核心對象和庫的編程有熟練的運用。
2、Python面向對象,核心對象,異常處理,多線程,網路編程,深入理解面向對象編程,異常處理機制,多線程原理,網路協議知識,並熟練運用於項目中。
3、類的原理,MetaClass,下劃線的特殊方法,遞歸,魔術方法,反射,迭代器,裝飾器,UnitTest,Mock。深入理解面向對象底層原理,掌握Python開發高級進階技術,理解單元測試技術。
4、資料庫知識,範式,MySQL配置,命令,建庫建表,數據的增刪改查,約束,視圖,存儲過程,函數,觸發器,事務,游標,PDBC,深入理解資料庫管理系統通用知識及MySQL資料庫的使用與管理。為Python後台開發打下堅實基礎。
5、Linux安裝配置,文件目錄操作,VI命令,管理,用戶與許可權,環境配置,Docker,Shell編程Linux作為一個主流的伺服器操作系統,是每一個開發工程師必須掌握的重點技術,並且能夠熟練運用。
第二階段:PythonWEB開發
階段目標:
1. 熟練掌握Web前端開發技術,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系統中的前後端交互過程與通信協議
3. 熟練運用Web前端和Django和Flask等主流框架完成Web系統開發
4. 深入理解網路協議,分布式,PDBC,AJAX,JSON等知識
5. 能夠運用所學知識開發一個MiniWeb框架,掌握框架實現原理
6. 使用Web開發框架實現貫穿項目
知識點:
Web前端編程、Web前端高級、Django開發框架、Flask開發框架、Web開發項目實戰。
1、Web頁面元素,布局,CSS樣式,盒模型,JavaScript,JQuery與Bootstrap掌握前端開發技術,掌握JQuery與BootStrap前端開發框架,完成頁面布局與美化。
2、前端開發框架Vue,JSON數據,網路通信協議,Web伺服器與前端交互熟練使用Vue框架,深入理解HTTP網路協議,熟練使用Swagger,AJAX技術實現前後端交互。
3、自定義Web開發框架,Django框架的基本使用,Model屬性及後端配置,Cookie與Session,模板Templates,ORM數據模型,Redis二級緩存,RESTful,MVC模型掌握Django框架常用API,整合前端技術,開發完整的WEB系統和框架。
4、Flask安裝配置,App對象的初始化和配置,視圖函數的路由,Request對象,Abort函數,自定義錯誤,視圖函數的返回值,Flask上下文和請求鉤子,模板,資料庫擴展包Flask-Sqlalchemy,資料庫遷移擴展包Flask-Migrate,郵件擴展包Flask-Mail。掌握Flask框架的常用API,與Django框架的異同,並能獨立開發完整的WEB系統開發。
第三階段:爬蟲與數據分析
階段目標:
1. 熟練掌握爬蟲運行原理及常見網路抓包工具使用,能夠對HTTP及HTTPS協議進行抓包分析
2. 熟練掌握各種常見的網頁結構解析庫對抓取結果進行解析和提取
3. 熟練掌握各種常見反爬機制及應對策略,能夠針對常見的反爬措施進行處理
4. 熟練使用商業爬蟲框架Scrapy編寫大型網路爬蟲進行分布式內容爬取
5. 熟練掌握數據分析相關概念及工作流程
6. 熟練掌握主流數據分析工具Numpy、Pandas和Matplotlib的使用
7. 熟練掌握數據清洗、整理、格式轉換、數據分析報告編寫
8. 能夠綜合利用爬蟲爬取豆瓣網電影評論數據並完成數據分析全流程項目實戰
知識點:
網路爬蟲開發、數據分析之Numpy、數據分析之Pandas。
1、爬蟲頁面爬取原理、爬取流程、頁面解析工具LXML,Beautifulfoup,正則表達式,代理池編寫和架構、常見反爬措施及解決方案、爬蟲框架結構、商業爬蟲框架Scrapy,基於對爬蟲爬取原理、網站數據爬取流程及網路協議的分析和了解,掌握網頁解析工具的使用,能夠靈活應對大部分網站的反爬策略,具備獨立完成爬蟲框架的編寫能力和熟練應用大型商業爬蟲框架編寫分布式爬蟲的能力。
2、Numpy中的ndarray數據結構特點、numpy所支持的數據類型、自帶的數組創建方法、算術運算符、矩陣積、自增和自減、通用函數和聚合函數、切片索引、ndarray的向量化和廣播機制,熟悉數據分析三大利器之一Numpy的常見使用,熟悉ndarray數據結構的特點和常見操作,掌握針對不同維度的ndarray數組的分片、索引、矩陣運算等操作。
3、Pandas裡面的三大數據結構,包括Dataframe、Series和Index對象的基本概念和使用,索引對象的更換及刪除索引、算術和數據對齊方法,數據清洗和數據規整、結構轉換,熟悉數據分析三大利器之一Pandas的常見使用,熟悉Pandas中三大數據對象的使用方法,能夠使用Pandas完成數據分析中最重要的數據清洗、格式轉換和數據規整工作、Pandas對文件的讀取和操作方法。
4、matplotlib三層結構體系、各種常見圖表類型折線圖、柱狀圖、堆積柱狀圖、餅圖的繪制、圖例、文本、標線的添加、可視化文件的保存,熟悉數據分析三大利器之一Matplotlib的常見使用,熟悉Matplotlib的三層結構,能夠熟練使用Matplotlib繪制各種常見的數據分析圖表。能夠綜合利用課程中所講的各種數據分析和可視化工具完成股票市場數據分析和預測、共享單車用戶群里數據分析、全球幸福指數數據分析等項目的全程實戰。
第四階段:機器學習與人工智慧
階段目標:
1. 理解機器學習相關的基本概念及系統處理流程
2. 能夠熟練應用各種常見的機器學習模型解決監督學習和非監督學習訓練和測試問題,解決回歸、分類問題
3. 熟練掌握常見的分類演算法和回歸演算法模型,如KNN、決策樹、隨機森林、K-Means等
4. 掌握卷積神經網路對圖像識別、自然語言識別問題的處理方式,熟悉深度學習框架TF裡面的張量、會話、梯度優化模型等
5. 掌握深度學習卷積神經網路運行機制,能夠自定義卷積層、池化層、FC層完成圖像識別、手寫字體識別、驗證碼識別等常規深度學習實戰項目
知識點:
1、機器學習常見演算法、sklearn數據集的使用、字典特徵抽取、文本特徵抽取、歸一化、標准化、數據主成分分析PCA、KNN演算法、決策樹模型、隨機森林、線性回歸及邏輯回歸模型和演算法。熟悉機器學習相關基礎概念,熟練掌握機器學習基本工作流程,熟悉特徵工程、能夠使用各種常見機器學習演算法模型解決分類、回歸、聚類等問題。
2、Tensorflow相關的基本概念,TF數據流圖、會話、張量、tensorboard可視化、張量修改、TF文件讀取、tensorflow playround使用、神經網路結構、卷積計算、激活函數計算、池化層設計,掌握機器學習和深度學習之前的區別和練習,熟練掌握深度學習基本工作流程,熟練掌握神經網路的結構層次及特點,掌握張量、圖結構、OP對象等的使用,熟悉輸入層、卷積層、池化層和全連接層的設計,完成驗證碼識別、圖像識別、手寫輸入識別等常見深度學習項目全程實戰。
『肆』 Python的運行環境是什麼
也可已用myeclipse來開發調試的,只要加個python的插件就行了,具體網路吧
『伍』 零基礎學Python應該學習哪些入門知識
關於零基礎怎麼樣能快速學好Python的問題,網路提問和解答的都很多,你可以網路下看看。我覺得從個人自學的角度出發,應從以下幾個方面來理解:
1 為什麼選擇學python?
據統計零基礎或非專業的人士學python的比較多,據HackerRank開發者調查報告2018年5月顯示(見圖),Python排名第一,成為最受歡迎編程語言。Python以優雅、簡潔著稱,入行門檻低,可以從事Linux運維、Python Web網站工程師、Python自動化測試、數據分析、人工智慧等職位,薪資待遇呈上漲趨勢。
2 入門python需要那些准備?
2.1 心態准備。編程是一門技術,也可說是一門手藝。如同書法、繪畫、樂器、雕刻等,技藝純熟的背後肯定付出了長時間的反復練習。不要相信幾周速成,也不能急於求成。編程的世界浩瀚無邊,所以請保持一顆敬畏的心態去學習,認真對待寫下的每一行代碼,甚至每一個字元。收拾好自己的心態,向著編程的世界出發。第一步至關重要,關繫到初學者從入門到精通還是從入門到放棄。選一條合適的入門道路,並堅持走下去。
2.2 配置 Python 學習環境。選Python2 還是 Python3?入門時很多人都會糾結。二者只是程序不兼容,思想上並無大差別,語法變動也並不多。選擇任何一個入手,都沒有大影響。如果你仍然無法抉擇,那請選擇 Python3,畢竟這是未來的趨勢。
編輯器該如何選?同樣,推薦 pycharm 社區版,配置簡單、功能強大、使用起來省時省心,對初學者友好,並且完全免費!其他編輯器如:notepad++、sublimeText 3、vim 和 Emacs等不推薦了。
操作環境?Python 支持現有所有主流操作平台,不管是 windows 還是 mac 還是 linux,都能很好的運行 Python。並且後兩者都默認自帶 Python 環境。
2.3 選擇自學的書籍。我推薦的書的內容由淺入深,建議按照先後順序閱讀學習:
2.3.1《Python簡明教程》。這是一本言簡意賅的 Python 入門教程,簡單直白,沒有廢話。就算沒有基礎,你也可以像讀小說一樣,花兩天時間就可以讀完。適合入門快速了解語法。
2.3.2 廖雪峰編寫的《Python教程》。廖先生的教程涵蓋了 Python 知識的方方面面,內容更加系統,有一定深度,有一定基礎之後學習會有更多的收獲。
2.4 學會安裝包。Python中有很多擴展包,想要安裝這些包可以採用兩種方法:
2.4.1 使用pip或easy_install。
1)在網上找到的需要的包,下載下來。eg. rsa-3.1.4.tar.gz;
2)解壓縮該文件;
3)命令行工具cd切換到所要安裝的包的目錄,找到setup.py文件,然後輸入python setup.py install
2.4.2 不用pip或easy_install,直接打開cmd,敲pip install rsa。
3 提升階段需要恆心和耐力。
完成入門階段的基礎學習之後,常會陷入一個瓶頸期,通過看教程很難進一步提高編程水平。這時候,需要的是反復練習,大量的練習。可以從書上的例題、作業題開始寫,再寫小程序片段,然後寫完整的項目。我們收集了一些練習題和網站。可根據自己階段,選擇適合的練習去做。建議最好挑選一兩個系列重點完成,而不是淺嘗輒止。
3.1 多做練習。推薦網站練習:
crossin編程教室實例:相對於編程教室基礎練習著重於單一知識點,
編程實例訓練對基礎知識的融會貫通;
hackerrank:Python 部分難度循序漸進,符合學習曲線
實驗樓:提升編程水平從做項目開始;
codewar:社區型編程練習網站,內容由易到難;
leetcode:為編程面試准備,對初學者稍難;
牛客網:提供 BAT 等大廠筆試題目;
codecombat:提供一邊游戲一邊編程;
projecteuler:純粹的編程練習網站;
菜鳥教程100例:基於 py2 的基礎練習;
3.2 遇到問題多交流。
3.2.1 利用好搜索引擎。
3.2.2 求助於各大網站。推薦
stackoverflow:這是一個程序員的知識庫;
v2ex:國內非常不錯的編程社區,不僅僅是包含程序,也包含了程序員的生活;
segmentfault:一家以編程問答為主的網站;
CSDN、知乎、簡書等
3.2.3 加入相關的QQ、微信群、網路知道。不懂的可以隨時請教。
『陸』 學習python需要准備哪些環境
需要下載Python編譯器,建議安裝3.x,其次是代碼編輯器,推薦pycharn或者sublime text,這樣就可以寫代碼調試了
『柒』 如何搭建python開發環境
1、下載並安裝Python For Windows。打開Python官方網站(python.org),推薦下載Python 2.7.X版本。
2、安裝Python:一路默認設置Next下去,直到Finish,完成Python安裝
3、在這里推薦使用PyCharm: PyCharm是一種Python IDE,帶有一整套可以幫助用戶在使用Python語言開發時提高其效率的工具,比如調試、語法高亮、Project管理、代碼跳轉、智能提示、自動完成、單元測試、版本控制。
4、下載PyCharm集成開發軟體,官網提供了兩種版本:Professional Edition(專業版可以試用30天,學習Python30天也夠用了。也有熱心網友提供License key,可自行搜索),Community Edition(社區版,功能少一點但也夠用了)。
5、安裝PyCharm集成開發軟體:一路默認設置Next下去,直到Finish,完成PyCharm的安裝。Win8的界面,就是沒有官網展示的好看。沒關系,我們下面配置一下就會變得漂亮起來。
配置PyCharm一:風格(配色方案)的調整::【File】→【Settings】→【 Editor】→【Colors & Fonts】→Scheme選擇Dracula
『捌』 Python的環境是什麼怎麼配置的
在Path里加上:C:\Python26; 就可以了
(根據自己Python安裝路徑、Python版本而定。)