① python的動態有哪些類型
1創建變數:當代碼第一次賦值給一個變數時就創建了這個變數,在之後的賦值過程關聯值,python在代碼運行之前先檢驗變數名,可以當成是最初的賦值創建變數。
2變數聲明:python中類型只存在於對象中,而不是變數,變數是通用的,他只是在程序的某一段時間引用了某種類型的對象而已,比如定義a =1 ,a = 'a',一開始定義了變數a為指向了整型的對象,然後變數又指向了字元串類型的變數,可見,變數是不固定的類型。
3變數使用:變數出現在表達式中就會馬上被對象所取代,無論對象是什麼內類型,變數在使用前必須要先定義。
② python 金融分析 應該使用什麼模型
鏈接:http://pan..com/s/1djPqbCXnQrRpW0dgi2MCJg
華爾街學堂 python金融實務從入門到精通。最近,越來越多的研究員、基金經理甚至財務會計領域的朋友,向小編咨詢:金融人需要學Python么?事實上在現在,這已經不是一個問題了。Python已成為國內很多頂級投行、基金、咨詢等泛金融、商科領域的必備技能。中金公司、銀河證券、南方基金、銀華基金在招聘分析師崗位時,紛紛要求熟練掌握Python數據分析技能。
課程目錄:
Python在金融資管領域中的應用
安裝anaconda步驟
Python基礎知識
Python基礎金融分析應用
成為編程能手:Python知識進階
利用Python實現金融數據收集、分析與可視化
......
③ stata做動態因子模型求解釋結果,圖如下
共同因子?英文能給出來么?
STATA主頁的MANUAL給你看看。
http://www.stata.com/features/overview/dynamic-factor-models/
④ 《Python源碼剖析深度探索動態語言核心技術》pdf下載在線閱讀,求百度網盤雲資源
《Python源碼剖析》(陳儒)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/1dtk-nY5HtgXS3CIBVHJCRA
書名:Python源碼剖析
作者:陳儒
豆瓣評分:8.8
出版社:電子工業出版社
出版年份:2008-6
頁數:480
內容簡介:
作為主流的動態語言,Python不僅簡單易學、移植性好,而且擁有強大豐富的庫的支持。此外,Python強大的可擴展性,讓開發人員既可以非常容易地利用C/C++編寫Python的擴展模塊,還能將Python嵌入到C/C++程序中,為自己的系統添加動態擴展和動態編程的能力。.
為了更好地利用Python語言,無論是使用Python語言本身,還是將Python與C/C++交互使用,深刻理解Python的運行原理都是非常重要的。本書以CPython為研究對象,在C代碼一級,深入細致地剖析了Python的實現。書中不僅包括了對大量Python內置對象的剖析,更將大量的篇幅用於對Python虛擬機及Python高級特性的剖析。通過此書,讀者能夠透徹地理解Python中的一般表達式、控制結構、異常機制、類機制、多線程機制、模塊的動態載入機制、內存管理機制等核心技術的運行原理,同時,本書所揭示的動態語言的核心技術對於理解其他動態語言,如 Javascript、Ruby等也有較大的參考價值。..
本書適合於Python程序員、動態語言愛好者、C程序員閱讀
⑤ python定義模型
學python的人都知道,python中一切皆是對象,如class生成的對象是對象,class本身也是對象,int是對象,str是對象,dict是對象...。所以,我很好奇,python是怎樣實現這些對象的?帶著這份好奇,我決定去看看python的源碼,畢竟源碼才是滿足自己好奇心最直接的方法。
在object.h文件中,定義了兩種數據結構PyObject和PyVarObject,代碼如下:
1 #define PyObject_HEAD 2 Py_ssize_t ob_refcnt; 3 struct _typeobject *ob_type; 4 5 #define PyObject_VAR_HEAD 6 PyObject_HEAD 7 Py_ssize_t ob_size; 8 9 typedef struct _object {10 PyObject_HEAD11 } PyObject;12 13 typedef struct {14 PyObject_VAR_HEAD15 } PyVarObject;
這兩種數據結構分別對應python的兩種對象:固定長度對象和可變長度對象。python中的所有對象都屬於這兩種對象中的一種,如int,float是固定長度對象,list,str,dict是可變長度對象。從上面兩種對象數據結構定義來看,可變長度對象和固定長度對象的頭都是PyObject結構體,也就是說python中所有對象的開頭都包含這個結構體,並且可以用PyObject *指針來訪問任何對象,這種訪問對象的方法在python的源碼中隨處可見。PyObject結構體包含兩個成員,ob_refcnt和ob_type指針。ob_refcnt用來表示對象被引用的次數,當ob_refcnt == 0時,這個對象會被立即銷毀;ob_type指針指向了一個_typeobject類型的結構體,表示對象所屬的類型,也就是生成該對象的類型,這其實很類似於面向對象中類與實例的關系,PyObject是某個類的實例,ob_type表示這個類。但與面向對象不同的是,ob_type本身也是個對象,我們來看下_typeobject的定義:
1 typedef struct _typeobject { 2 PyObject_VAR_HEAD 3 const char *tp_name; /*類型名 */ 4 Py_ssize_t tp_basicsize, tp_itemsize; /* 實例化對象的大小 */ 5 6 /* 標准方法 */ 7 8 destructor tp_dealloc; 9 printfunc tp_print;10 getattrfunc tp_getattr;11 setattrfunc tp_setattr;12 cmpfunc tp_compare;13 reprfunc tp_repr;14 15 /* 標准類(數值類,列表類,dict類)方法*/16 17 PyNumberMethods *tp_as_number;18 PySequenceMethods *tp_as_sequence;19 PyMappingMethods *tp_as_mapping;20 21 /* 其它標准方法*/22 23 hashfunc tp_hash;24 ternaryfunc tp_call;25 reprfunc tp_str;26 getattrofunc tp_getattro;27 setattrofunc tp_setattro;28 ...
29 } PyTypeObject;
從上面定義來看,_typeobject的開頭也包含了PyObject結構體,所以它也是一個對象,既然它也是一個對象,那麼按照面向對象的理解,它又是誰來生成的呢?答案是所有PyTypeObject對象都是通過PyType_Type來生成的,包括PyType_Type本身,因為PyType_Type也是PyTypeObject對象,有點繞。PyType_Type的定義是通過將PyType_Type聲明為全局靜態變數實現的,具體如下:
1 PyTypeObject PyType_Type = { 2 PyVarObject_HEAD_INIT(&PyType_Type, 0) 3 "type", /* tp_name */ 4 sizeof(PyHeapTypeObject), /* tp_basicsize */ 5 sizeof(PyMemberDef), /* tp_itemsize */ 6 (destructor)type_dealloc, /* tp_dealloc */ 7 0, /* tp_print */ 8 0, /* tp_getattr */ 9 0, /* tp_setattr */10 0, /* tp_compare */11 (reprfunc)type_repr, /* tp_repr */12 0, /* tp_as_number */13 0, /* tp_as_sequence */14 0, /* tp_as_mapping */15 (hashfunc)_Py_HashPointer, /* tp_hash */16 (ternaryfunc)type_call, /* tp_call */17 0, /* tp_str */18 (getattrofunc)type_getattro, /* tp_getattro */19 (setattrofunc)type_setattro, /* tp_setattro */20 0, /* tp_as_buffer */21 ...22 }
從PyType_Type定義來看,ob_type被初始化為它自己的地址,所以PyType_Type的類型就是自己。從python源碼實現來看,所有PyTypeObject的ob_type都會指向PyType_Type對象,所以PyType_Type是所有類型的類型,稱之為元類。python中定義了很多內建的類型對象,如PyInt_Type (int類型),PyStr_Type (str類型),PyDict_Type(dict類型) 類型對象,下面看下PyInt_Type類型的定義:
1 PyTypeObject PyInt_Type = { 2 PyVarObject_HEAD_INIT(&PyType_Type, 0) 3 "int", 4 sizeof(PyIntObject), 5 0, 6 (destructor)int_dealloc, /* tp_dealloc */ 7 (printfunc)int_print, /* tp_print */ 8 0, /* tp_getattr */ 9 0, /* tp_setattr */10 (cmpfunc)int_compare, /* tp_compare */11 (reprfunc)int_to_decimal_string, /* tp_repr */12 &int_as_number, /* tp_as_number */13 0, /* tp_as_sequence */14 0, /* tp_as_mapping */15 (hashfunc)int_hash, /* tp_hash */16 0, /* tp_call */17 ...18 };
從PyInt_Type定義來看,它主要包含了int數據類型相關的方法。PyInt_Type類型對象的初始化和PyType_Type類型類似,PyInt_Type類型的定義也是通過全局靜態變數的方式實現的,除了PyInt_Type了下,所有python內建類型都是以這種方式定義的。這些類型產生的對象都會共享這些類型對象,包括這些類型定義的方法。
在python中,怎樣查看對象的類型呢?有兩種方法,一種是直接type:
1 >>> x = 12 >>> type(x)3 <type 'int'>
另一種是通過對象的__class__屬性:
1 >>> x = 12 >>> type(x)3 <type 'int'>4 >>> x.__class__5 <type 'int'>
現在來看看int,str,dict這些類型的類型:1 <type 'int'>2 >>> type(int)3 <type 'type'>4 >>> type(str)5 <type 'type'>6 >>> type(dict)7 <type 'type'>8 >>> type(type)9 <type 'type'>從這個輸出來看,int,str,dict這些類型的類型都是type,這也印證了前面說的,所有類型都是通過元類type生成的。
⑥ python(pandas模塊)
1.什麼是pandas? numpy模塊和pandas模塊都是用於處理數據的模塊。 numpy主要用於針對數組進行統計計算,處理數字數據比較方便。 pandas除了可以處理數字數據,還可...
⑦ 有人說python是動態解釋,開發效率高,為什麼
任何高級語言寫的程序一定要變成機器語言才能執行。
Python是解釋型語言,就是在執行的時候才變成機器語言。
開發效率高,通俗地說就是寫程序寫的快,但是運行效率不見得高。
⑧ 如何利用 Python 實現 SVM 模型
我先直觀地闡述我對SVM的理解,這其中不會涉及數學公式,然後給出Python代碼。
SVM是一種二分類模型,處理的數據可以分為三類:
線性可分,通過硬間隔最大化,學習線性分類器
近似線性可分,通過軟間隔最大化,學習線性分類器
線性不可分,通過核函數以及軟間隔最大化,學習非線性分類器
線性分類器,在平面上對應直線;非線性分類器,在平面上對應曲線。
硬間隔對應於線性可分數據集,可以將所有樣本正確分類,也正因為如此,受雜訊樣本影響很大,不推薦。
軟間隔對應於通常情況下的數據集(近似線性可分或線性不可分),允許一些超平面附近的樣本被錯誤分類,從而提升了泛化性能。
如下圖: