導航:首頁 > 編程語言 > pthreads編程

pthreads編程

發布時間:2022-08-02 20:48:06

Ⅰ 如何讓您的php也支持pthreads多線程

一、下載pthreads擴展
二、安裝pthreads擴展
復制php_pthreads.dll 到目錄 bin\php\ext\ 下面。
復制pthreadVC2.dll 到目錄 bin\php\ 下面。
復制pthreadVC2.dll 到目錄 C:\windows\system32 下面。
打開php配置文件php.ini。在後面加上extension=php_pthreads.dll
提示!Windows系統需要將 pthreadVC2.dll 所在路徑加入到 PATH 環境變數中。我的電腦--->滑鼠右鍵--->屬性--->高級--->環境變數--->系統變數--->找到名稱為Path的--->編輯--->在變數值最後面加上pthreadVC2.dll的完整路徑
比如C:\WINDOWS\system32\pthreadVC2.dll

Ⅱ 學習c++多線程編程主要用pthread還是c++

pthreads 就像它的名稱一樣,是一種適用於多平台可移植的多線程操作庫,在 Windows 上 pthreads 的下層就是 Win32 多線程 API。
pthreads 庫是 C 語言介面,因此 C 和 C++ 都能使用。
如果想用 C++ 的跨平台多線程 API 可以用 boost.thread
如果不想跨平台,那就用 Native API 就可以了,比如 Windows 的 MFC 中的 CWinThread 類。
用哪個庫,取決去工程的目標平台和將來的移植打算。

Ⅲ OpenMP比Pthreads層次更高書上有哪些論據,你是怎麼理解的

各有優勢。
pthread在程序啟動時創建一束線程,將工作分配到線程上。然而,這種方法需要相當多的線程指定代碼,而且不能保證能夠隨著可用處理器的數量而合理地進行擴充。OpenMP,不需要指定數量,在有循環的地方加上代碼,修改設置文件極客。OpenMP非常方便,因為它不會將軟體鎖定在事先設定的線程數量中,但是相對的查錯更難也更麻煩。
Pthreads指定API來處理線程要求的大部分行為。這些行為包括創建和終止線程、等待線程完成、以及管理線程之間的交互。後面的目錄中存在各種鎖定機制,能夠阻止兩個線程同時嘗試修改相同的數據值:互斥體、條件變數和信號量。(從技術上講,不是Pthreads的一部分,但是它們從概念上更接近於與線程合作,而且可用於Pthreads能夠運行的所有系統上。

Ⅳ 新手上路,求java高手啊,使用Java、Pthreads或Win32線程庫寫一個多線程程序生成Fibonacci序列。

void main()
{
int t = 0, f1 = 1, f2 = 1, f3 = 1;

printf("請輸入t:");
scanf("%d", &t);
while(f3 <= t)
{
f1 = f2;
f2 = f3;
f3 = f1 + f2;
}
printf("結果為: %d", f3);
}

Ⅳ C語言中 怎麼實現雙線程 或者 父子線程啊

運行一個程序,這個運行實體就是一個「進程」。

例如,用滑鼠雙擊IE瀏覽器的圖標,你運行了一個IE「進程」。第一個窗未關,你又用滑鼠雙擊IE瀏覽器的圖標,又出來一個瀏覽器的窗。這時,你運行了同一個程序的兩個進程。

對於自己寫的程序也如此。運行它,這個運行實體就是一個「進程」。同時運行兩個,就是兩個進程。計算機分別對兩個進程分配資源,直到進程結束,收回資源。

線程是進程里真真跑的線路,真真執行的運算,每個進程有一個主線程。進程里可以開第二第三條新的執行線路,gcc 用 pthread_create(),VC++ 用 CreateThread(), 這就叫雙線程和多線程。進程是線程的容器,同一進程的線程共享它們進程的資源。線程里建的線程就是父子線程。

兩個或多個進程協同工作時,需要互相交換信息,有些情況下進程間交換的少量信息,有些情況下進程間交換大批信息。這就要通訊。通訊方式不止一種。管道就是一種。VC++ 用 CreatePipe() 函數建立。

管道的實質是一個共享文件,可藉助於文件系統的機制實現,創建、打開、關閉和讀寫.

一個進程正在使用某個管道寫入或讀出數據時,另一個進程就必須等待. 發送者和接收者雙方必須知道對方是否存在,如果對方已經不存在,就沒有必要再發送信息.,發送信息和接收信息之間要協調,當寫進程把一定數量的數據寫入管道,就去睡眠等待,直到讀進程取走數據後,把它喚醒。

VC++ 線程例子:
#include <windows.h>
#include <iostream.h>

DWORD WINAPI fun1(LPVOID lp);
DWORD WINAPI fun2(LPVOID lp);
int piao=500;

int main()
{
HANDLE pthread1,pthread2;
pthread1=CreateThread(0,0,fun1,0,0,0);
pthread2=CreateThread(0,0,fun2,0,0,0);
CloseHandle(pthread1);
CloseHandle(pthread2);
Sleep(3000);
return 0;

}

DWORD WINAPI fun1(LPVOID lp)
{
while(1)
{

if(piao>0)
cout<< "thread-1-"<< piao--<<endl;
else
break;
}
return 0;
}

DWORD WINAPI fun2(LPVOID lp)
{
while(1)
{
if(piao>0)
cout<<"thread-2-"<<piao--<<endl;
else
break;
}
return 0;
}

===================================
建管道函數原形:
BOOL CreatePipe(
PHANDLE hReadPipe, // read handle
PHANDLE hWritePipe, // write handle
LPSECURITY_ATTRIBUTES lpPipeAttributes, // security attributes
DWORD nSize // pipe size
);

linux系統下,c語言pthread多線程編程傳參問題

3個線程使用的都是同一個info

代碼 Info_t *info= (Info_t *)malloc(sizeof(Info_t));只創建了一個info

pthread_create(&threads[i],NULL,calMatrix,(void *)info); 三個線程使用的是同一個

我把你的代碼改了下:

#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>

intmtc[3]={0};//resultmatrix

typedefstruct
{
intprank;
int*mta;
int*mtb;
}Info_t;

void*calMatrix(void*arg)
{
inti;
Info_t*info=(Info_t*)arg;
intprank=info->prank;
fprintf(stdout,"calMatrix:prankis%d ",prank);

for(i=0;i<3;i++)
mtc[prank]+=info->mta[i]*info->mtb[i];

returnNULL;
}

intmain(intargc,char**argv)
{
inti,j,k=0;
intmta[3][3];
intmtb[3]={1};
Info_t*info=(Info_t*)malloc(sizeof(Info_t)*3);

for(i=0;i<3;i++)
for(j=0;j<3;j++)
mta[i][j]=k++;
/*3threads*/
pthread_t*threads=(pthread_t*)malloc(sizeof(pthread_t)*3);
fprintf(stdout," ");fflush(stdout);
for(i=0;i<3;i++)
{
info[i].prank=i;
info[i].mta=mta[i];
info[i].mtb=mtb;
pthread_create(&threads[i],NULL,calMatrix,(void*)(&info[i]));
}
for(i=0;i<3;i++)
pthread_join(threads[i],NULL);

fprintf(stdout," ====thematrixresult==== ");
fflush(stdout);

for(i=0;i<3;i++)
{
fprintf(stdout,"mtc[%d]=%d ",i,mtc[i]);
fflush(stdout);
}
return0;
}

矩陣的計算我忘記了,你運行看看結果對不對

Ⅶ C語言多線程編程為什麼要用pthread

這個是現在的「框架」,很方便使用。。。。。此外,你可以自己寫的——雖然有難度

~~~~~~~~~~~~

Ⅷ linux c編程中,使用pthread_create函數創建線程時,函數的第3個參數的是void

可以這樣聲明,但是在調用pthread_create函數的時候需要將線程函數的指針強制類型轉換成void *(pthread)(void*),否則編譯器會報錯。

Ⅸ 有人能教下我有關linux裡面線程的知識嗎

.線程的基本介紹
(1)線程的概述
線程與進程類似,也允許應用程序並發執行多個任務的一種機制。一個進程可以包含多個線程,同一程序中的所有線程共享同一份全局內存區域,線程之間沒有真正意義的等級之分。同一個進程中的線程可以並發執行,如果處理器是多核的話線程也可以並行執行,如果一個線程因為等待I/O操作而阻塞,那麼其他線程依然可以繼續運行
(2)線程優於進程的方面

argv,environ

主線程棧
線程3的棧
線程2的棧
線程1的棧
共享函數庫共享的內存

未初始化的數據段
初始化數據段
文本
.進程間的信息難以共享。由於除去只讀代碼段外,父子進程並未共享內存,因此必須採用一些進程間通訊,在進程之間交換信息
.調用fork()來創建進程代價相對較高
線程很好的解決了上述倆個問題
.線程之間能夠方便,快速的共享信息,只需將數據復制到共享(全局或堆)變數中即可
.創建線程比創建線程通常要快10甚至更多,線程創建之所以快,是因為fork創建進程時所需復制多個屬性,而在線程中,這些屬性是共享的。
(3)創建線程
啟動程序時,產生的進程只有單條線程,我們稱之為主線程
#include<pthread.h>
int pthread_create(pthread_t *thread,const pthread_attr_t *attr,void*(*start)(void *),void *arg);12

新線程通過調用帶有arg的函數開始執行,調用pthread_create()的線程會繼續執行該調用之後的語句。
(4)終止線程
可以以如下方式終止線程的運行
.線程調用pthread_exit()
.線程start函數執行return語句並返回指定值
.調用pthread_cancel()取消線程
.任意線程調用了exit(),或者主線程執行了return語句,都會導致進程中的所有線程立即終止
pthread_exit()函數可以終止線程,且其返回值可由另一線程通過調用pthread_join()獲得
#include<pthread.h>void pthread_exit(void *retval);12

調用pthread_exit()相當於在線程的start函數中執行return,不同之處在於,pthread_exit()可以在任何地方調用,參數retval指定了線程的返回值
(5)獲取線程ID
#include<pthread.h>pthread_t pthread_self(void);12

線程ID在應用程序中主要有如下用途
.不同的pthreads函數利用線程ID來標識要操作目標線程。
.在具體的應用程序中,以特定線程的線程ID作為動態數據結構的標簽,這頗有用處,既可用來識別某個數據結構的創建者或屬主線程,又可確定隨後對該數據結構執行操作的具體線程
函數pthread_equal()可檢查倆個線程的ID是否相同
#include<pthread.h>int pthread_equal(pthread_t t1,pthread_t t2);//如果相同返回非0值,否則返回0123

(6)連接已終止的線程
函數pthread_join()等待由thread表識的線程終止
#include<pthread.h>int pthread_join(pthread_t thread,void **retval);//返回0調用成功,否則失敗123

如果pthread_join()傳入一個之前已然連接過的線程ID,將會導致無法預知的行為,當相同線程ID在參與一次連接後恰好為另一新建線程所重用,再度連接的可能就是這個新線程
若線程未分離,則就應該使用pthread_join()來連接線程,否則會產生僵屍線程
pthrea_join()函數的要點
.線程之間的關系是對等的,所以任意線程都可以調用pthread_join()來連接其他線程
.pthread_join()無法針對任意線程,只能連接單個線程
(6)線程的分離
默認情況下線程都是可連接的,但有時候,我們並不關心線程退出的狀態,我們可以調用pthread_detach()並向thread參數傳入指定線程的的標識符,將該線程標記為處於分離狀態
#include<pthread.h>int pthread_detach(pthread_t thread);//返回0成功,否則失敗123

一旦線程處於分離狀態,就不能在使用pthread_join()來獲取其狀態,也無法使其重返可連接狀態
(7)在應用程序中如何來選擇進程還是線程
.線程之間共享數據很簡單,進程間的數據共享需要更多的投入
.創建線程要比創建進程塊很多
.多線程編程時,需要確保調用線程安全的函數
.某個線程中的bug可能會危害進程中所有線程
.每個線程都在徵用宿主進程中有限的虛擬地址空間
.在多線程應用中,需要小心使用信號
.除了數據,線程還可以共享文件描述符,信號處置,當前工作目錄,以及用戶ID和組ID
線程的同步
(1)保護共享變數訪問:互斥量
線程的主要優勢在於能夠通過全局變數來共享信息,不過這種共享是有代價的。必須確保多個線程修改同一變數時,不會有其他線程也正在修改此變數,為避免線程更新時共享變數時所出現的問題,必須使用互斥量來確保同時僅有一個線程可以訪問某項共享資源
(2)靜態分配的互斥鎖
互斥鎖既可以像靜態變數那樣分配,也可以在運行時動態分配,互斥量屬於pthread_mutex_t類型的變數,在使用之前必須對其初始化。對於靜態分配的互斥量而言,可如下例所示,將PTHREAD_MUTEX_INITIALIZER賦給互斥量
pthread_mutex_t = PTHREAD_MUTEX_INITIALIZER;1

1.加鎖和解鎖互斥量
初始化之後,互斥量處於未鎖定狀態。函數pthread_mutex_lock()可以鎖定某一互斥量
而函數pthread_mutex_unlock()則可以將一個互斥量解鎖
#include<pthread.h>int pthread_mutex_lock(pthread_mutex_t *mutex);int pthread_mutex_unlock(pthread_mutex_t *mutex);//返回0成功,其他失敗1234

要鎖定互斥量,在調用pthread_mutex_lock()時需要指定互斥量,如果互斥量當前處於未鎖定狀態,則該調用將會立即返回,如果該互斥量已被其他線程鎖定,那麼該調用將會阻塞,直至互斥量被解鎖
函數pthread_mutex_unlock()將解鎖之前已遭調用線程鎖定的互斥量
2.互斥量的性能
通常情況下,線程會花費更多的時間去做其他工作,對互斥量的加鎖解鎖相對要少的多,因此使用互斥量對大部分程序來說性能並無顯著的影響
3.互斥量的死鎖
當一個線程需要同時訪問多個共享資源時,沒個資源由不同的互斥索管理。當超過一個線程加鎖同一組互斥量時,就有可能發生死鎖。如下圖所示
線程A
1.pthread_mutex_lock(mutex1);
2.pthread_mutex_lock(mutex2);
線程2
1.pthread_mutex_lock(mutex2);
2.pthread_mutex_lock(mutex1);
每個線程都成功的鎖住一個互斥量,接著試圖對以為另一線程鎖定的互斥量加鎖,就會一直等下去
要避免此類死鎖問題,最簡單的就是定義互斥量的層級關系

閱讀全文

與pthreads編程相關的資料

熱點內容
字母h從右往左跑的c語言編程 瀏覽:127
安卓手機如何擁有蘋果手機橫條 瀏覽:763
業余編程語言哪個好學 瀏覽:131
按照文件夾分個壓縮 瀏覽:104
航空工業出版社單片機原理及應用 瀏覽:758
如何在電信app上綁定親情號 瀏覽:376
安卓的怎麼用原相機拍月亮 瀏覽:805
配音秀為什麼顯示伺服器去配音了 瀏覽:755
c盤清理壓縮舊文件 瀏覽:325
app怎麼交付 瀏覽:343
圖蟲app怎麼才能轉到金幣 瀏覽:175
如何做徵文app 瀏覽:446
用什麼app管理斐訊 瀏覽:169
安卓如何下載寶可夢劍盾 瀏覽:166
編譯器開發屬於哪個方向 瀏覽:940
megawin單片機 瀏覽:687
以色列加密貨幣監督 瀏覽:909
程序員前端現在怎麼樣 瀏覽:499
伺服器和介面地址ping不通 瀏覽:557
linux命令返回上級目錄 瀏覽:899