① 數據分析需要掌握哪些知識
數據分析定義
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷,以便採取適當行動。是有組織有目的地收集數據、分析數據,使之成為信息的過程。
數據分析分類
數據分析劃分為描述性統計分析、探索性數據分析以及驗證性數據分析;其中,探索性數據分析側重於在數據之中發現新的特徵,而驗證性數據分析則側重於已有假設的證實或證偽。
數據分析常用方法
1、PEST分析:
是利用環境掃描分析總體環境中的政治(Political)、經濟(Economic)、社會(Social)與科技(Technological)等四種因素的一種模型。這也是在作市場研究時,外部分析的一部分,能給予公司一個針對總體環境中不同因素的概述。這個策略工具也能有效的了解市場的成長或衰退、企業所處的情況、潛力與營運方向。一般用於宏觀分析。
2、SWOT分析:
又稱優劣分析法或道斯矩陣,是一種企業競爭態勢分析方法,是市場營銷的基礎分析方法之一,通過評價自身的優勢(Strengths)、劣勢(Weaknesses)、外部競爭上的機會(Opportunities)和威脅(Threats),用以在制定發展戰略前對自身進行深入全面的分析以及競爭優勢的定位。而此方法是Albert Humphrey所提。
3、5W2H分析:
用五個以W開頭的英語單詞和兩個以H開頭的英語單詞進行設問,發現解決問題的線索,尋找發明思路,進行設計構思,從而搞出新的發明項目具體:
(1)WHAT——是什麼?目的是什麼?做什麼工作?
(2)WHY——為什麼要做?可不可以不做?有沒有替代方案?
(3)WHO——誰?由誰來做?
(4)WHEN——何時?什麼時間做?什麼時機最適宜?
(5)WHERE——何處?在哪裡做?
(6)HOW ——怎麼做?如何提高效率?如何實施?方法是什麼?
(7)HOW MUCH——多少?做到什麼程度?數量如何?質量水平如何?費用產出如何?
4、7C羅盤模型:
7C模型包括
(C1)企業很重要。也就是說,Competitor:競爭對手,Organization:執行市場營銷或是經營管理的組織,Stakeholder:利益相關者也應該被考慮進來。
(C2)商品在拉丁語中是共同方便共同幸福的意思,是從消費者的角度考慮問題。這也和從消費者開始考慮問題的整合營銷傳播是一致的,能體現出與消費者相互作用進而開發出值得信賴的商品或服務的一種哲學。經過完整步驟創造出的商品可以稱之為商品化。
(C3)成本不僅有價格的意思,還有生產成本、銷售成本、社會成本等很多方面。
(C4)流通渠道表達商品在流動的含義。創造出一個進貨商、製造商、物流和消費者共生的商業模式。作為流通渠道來說,網路銷售也能算在內。
(C5)交流
(C6)消費者
N = 需求(Needs):生活必需品,像水、衣服、鞋。
W = 想法(Wants):想得到的東西,像運動飲料、旅遊鞋。
S = 安全(Security):安全性,像核電、車、食品等物品的安全。
E = 教育(Ecation):對消費者進行教育,為了能夠讓消費者也和企業一樣對商品非常了解,企業應該提供給消費者相應的知識信息。
(C7)環境
N = 國內和國際:國內的政治、法律和倫理環境及國際環境,國際關系。
W = 天氣:氣象、自然環境,重大災害時經營環境會放生變化,適應自然的經營活動是必要的。像便利店或是部分超市就正在實行。
S = 社會和文化:網路時代的社會、福利及文化環境理所當然應該成為考慮因素。
E = 經濟:經濟環境是對經營影響最大的,以此理所當然應該成為考慮因素。7C羅盤模型是一個合作市場營銷的工具。
5、海盜指標法AARRR:是互聯網常用的「用戶增長模型」,黑客增長模型:
Acquisition:獲取用戶
Activation:提高活躍度
Retention:提高留存率
Revenue:獲取收入
Refer:自傳播
數據分析常用工具
日常數據分析用的最多的還是辦公軟體尤其excel、word、ppt,數據存儲處理可能用到一些資料庫結合access用,另外目前一般公司小型關系資料庫用mysql的還是比較多免費、輕量級,還有較多的也在用pg。
其次分析師是用一些專業的分析軟體spss,sas,自助分析用的BI軟體平台如:finebi、tableau等。
finebi
其實想強調的是分析師40%-60%的時間可能會花在數據的獲取、處理和准備上,所以最好能會點sql,個人覺得對於分析師與其去了解資料庫,不如好好去學下sql,因為sql是標准化的數據查詢語言,所有的關系型資料庫包括一些開源的資料庫甚至各公司內部的數據平台都對它有良好的支持。最後對於第三方的一些數據收集或者一些跨平台的數據處理,包括一些分析可以用finebi。
數據分析流程
有了 這些基礎的理論和分析方法後,接下來具體的分析流程可參考:
1.提出問題(需求) 2.結論/假設 3.數據准備 4.數據分析 5.報告生成 結論驗證。
我們按照如上的分析步驟來個示例:
XX產品首銷,哪些用戶最有可能來購買?應該給哪些用戶進行營銷?
第一步首先是提出了問題,有了需求。
第二步分析問題,提出方案,這一步非常重要,正如上面提到的第二三類的數據分析本身就是一個假設檢驗的過程,如果這一步不能很好的假設,後續的檢驗也就無從談起。主要需要思考下從哪些方面來分析這個問題。
可以從三個方面:(PS:這里對於一些常規的屬性比如:性別、年齡、地區分布了這些基本,老大早已心中有數,就不再看了)
1.曾經購買過跟XX產品相似產品的用戶,且當前使用機型是XX產品上一或幾代產品,有換機意願需求的。
2.用戶的關注程度用戶是否瀏覽了新品產品站,是否搜索過新品相關的信息,是否參加了新品的活動。
3.用戶的消費能力歷史消費金額、歷史購機數量、本年度購機金額、本年度購機數量、最近一次購機時間及金額等。
第三步准備數據:
創建分析表,搜集數據 這一步基本是最花時間的,這時候就是考量你的數據平台、數據倉庫的時候了,倉庫集成的好,平台易用的話時間應該不用太長。
第四步數據分析:筆者是把數據導入到finebi進行分析的,也可以用python,其實用excel也非常好,只是筆者對excel的有些處理不是很擅長。
第五步就是圖表呈現,報告的表達了,最後我們驗證得到的一個結論就是:購買過同類產品,關注度越高,復購周期越近的用戶越最容易再次復購。
註:想要獲取33個好用數據分析工具,可以私聊回復我「工具」獲得!
② python可以做哪些有趣的事情
1. Python3 實現色情圖片識別
2. Python3 圖片隱寫術
3. 200 行 Python 代碼實現 2048
4. Python實現3D建模工具
5. 使用 Python 定製詞雲
6. Python3 智能裁切圖片
7.微信變為聊天機器人
8. 使用 Python 解數學方程
9. 使用 Python 創建照片馬賽克
10. Python 基於共現提取《釜山行》人物關系
11. Python 氣象數據分析:《Python 數據分析實戰》
12. NBA常規賽結果預測:利用Python進行比賽數據分析
13. Python 的循環語句和隱含波動率的計算
14. K-近鄰演算法實現手寫數字識別系統
15. 數獨游戲的 Python 實現與破解
16. 基於 Flask 與 MySQL 實現番劇推薦系
17. Python 實現英文新聞摘要自動提取
18. Python 解決哲學家就餐問題
19. Ebay 在線拍賣數據分析
20. 神經網路實現人臉識別任務
21. 使用 Python 解數學方程
22. Python3 實現火車票查詢工具
23. Python 實現埠掃描器
24. Python3 實現可控制肉雞的反向Shell
25. Python 實現 FTP 弱口令掃描器
26. 基於PyQt5 實現地圖中定位相片拍攝位置
27. Python實現網站模擬登陸
28.Python實現簡易區域網視頻聊天工具
29. 基於 TCP 的 python 聊天程序
30. Python3基於Scapy實現DDos
31. 高德API + Python 解決租房問題
32. 基於 Flask 與 RethinkDB 實現TODO List
③ python怎麼打開 gfs氣象數據
參考
http://www.jb51.net/article/48299.htm
④ Python問題 原題為ecoder控製程序一 根據用戶輸入的風速,輸出對應的颶風等級
# 風速 74-95 96-110 111-130 131-154 155及以上
# 級別 1 2 3 4 5
# 請編寫程序,根據用戶輸入的風速,輸出對應的颶風等級。
# 從測試集得到風速
velocity = int(input())
# 默認是0級
rank = 0
# 如果風速在74到95之間,輸出1
if velocity >= 74 and not velocity > 95:
rank += 1
# 如果風速在96到110之間,輸出2
elif velocity >= 96 and not velocity > 110:
rank += 2
# 如果風速在111到130之間,輸出3
elif velocity >= 111 and not velocity > 130:
rank += 3
# 如果風速在131到154之間,輸出4
elif velocity >= 131 and not velocity > 154:
rank += 4
# 如果風速大於155,輸出5
elif velocity >= 155:
rank += 5
print(rank)
⑤ 有沒有python數據統計和預測方法
呵呵,這可是涉及到氣象學建模和復雜的演算法的,你幾句話就想搞明白?那不人人都可以做天氣預報了,要氣象局幹嘛
⑥ 如何用Python把一個列表的多個元素合成單個元素
b=[1,2,3]
print''.join(map(str,b))#join操作不是str類型的列表會報錯,得先轉換哈
⑦ python圖像處理初學者求助
Pillow是Python里的圖像處理庫(PIL:Python Image Library),提供了了廣泛的文件格式支持,強大的圖像處理能力,主要包括圖像儲存、圖像顯示、格式轉換以及基本的圖像處理操作等。
1)使用 Image 類
PIL最重要的類是 Image class, 你可以通過多種方法創建這個類的實例;你可以從文件載入圖像,或者處理其他圖像, 或者從 scratch 創建。
要從文件載入圖像,可以使用open( )函數,在Image模塊中:
1
2
>>> from PIL import Image
>>> im = Image.open("E:/photoshop/1.jpg")
載入成功後,將返回一個Image對象,可以通過使用示例屬性查看文件內容:
1
2
3
>>> print(im.format, im.size, im.mode)
('JPEG', (600, 351), 'RGB')
>>>
format 這個屬性標識了圖像來源。如果圖像不是從文件讀取它的值就是None。size屬性是一個二元tuple,包含width和height(寬度和高度,單位都是px)。 mode 屬性定義了圖像bands的數量和名稱,以及像素類型和深度。常見的modes 有 「L」 (luminance) 表示灰度圖像, 「RGB」 表示真彩色圖像, and 「CMYK」 表示出版圖像。
如果文件打開錯誤,返回 IOError 錯誤。
只要你有了 Image 類的實例,你就可以通過類的方法處理圖像。比如,下列方法可以顯示圖像:
1
im.show()
2)讀寫圖像
PIL 模塊支持大量圖片格式。使用在 Image 模塊的 open() 函數從磁碟讀取文件。你不需要知道文件格式就能打開它,這個庫能夠根據文件內容自動確定文件格式。要保存文件,使用 Image 類的 save() 方法。保存文件的時候文件名變得重要了。除非你指定格式,否則這個庫將會以文件名的擴展名作為格式保存。
載入文件,並轉化為png格式:
1
2
3
4
5
6
7
8
9
10
11
12
13
"Python Image Library Test"
from PIL import Image
import os
import sys
for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +".png"
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print("Cannot convert", infile)
save() 方法的第二個參數可以指定文件格式。
3)創建縮略圖
縮略圖是網路開發或圖像軟體預覽常用的一種基本技術,使用Python的Pillow圖像庫可以很方便的建立縮略圖,如下:
1
2
3
4
5
6
7
# create thumbnail
size = (128,128)
for infile in glob.glob("E:/photoshop/*.jpg"):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+".thumbnail","JPEG")
上段代碼對photoshop下的jpg圖像文件全部創建縮略圖,並保存,glob模塊是一種智能化的文件名匹配技術,在批圖像處理中經常會用到。
注意:Pillow庫不會直接解碼或者載入圖像柵格數據。當你打開一個文件,只會讀取文件頭信息用來確定格式,顏色模式,大小等等,文件的剩餘部分不會主動處理。這意味著打開一個圖像文件的操作十分快速,跟圖片大小和壓縮方式無關。
4)圖像的剪切、粘貼與合並操作
Image 類包含的方法允許你操作圖像部分選區,PIL.Image.Image.crop 方法獲取圖像的一個子矩形選區,如:
1
2
3
4
# crop, paste and merge
im = Image.open("E:/photoshop/lena.jpg")
box = (100,100,300,300)
region = im.crop(box)
矩形選區有一個4元元組定義,分別表示左、上、右、下的坐標。這個庫以左上角為坐標原點,單位是px,所以上訴代碼復制了一個 200×200 pixels 的矩形選區。這個選區現在可以被處理並且粘貼到原圖。
1
2
region = region.transpose(Image.ROTATE_180)
im.paste(region, box)
當你粘貼矩形選區的時候必須保證尺寸一致。此外,矩形選區不能在圖像外。然而你不必保證矩形選區和原圖的顏色模式一致,因為矩形選區會被自動轉換顏色。
5)分離和合並顏色通道
對於多通道圖像,有時候在處理時希望能夠分別對每個通道處理,處理完成後重新合成多通道,在Pillow中,很簡單,如下:
1
2
r,g,b = im.split()
im = Image.merge("RGB", (r,g,b))
對於split( )函數,如果是單通道的,則返回其本身,否則,返回各個通道。
6)幾何變換
對圖像進行幾何變換是一種基本處理,在Pillow中包括resize( )和rotate( ),如用法如下:
1
2
out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise
其中,resize( )函數的參數是一個新圖像大小的元祖,而rotate( )則需要輸入順時針的旋轉角度。在Pillow中,對於一些常見的旋轉作了專門的定義:
1
2
3
4
5
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
7)顏色空間變換
在處理圖像時,根據需要進行顏色空間的轉換,如將彩色轉換為灰度:
1
2
cmyk = im.convert("CMYK")
gray = im.convert("L")
8)圖像濾波
⑧ 想把攝氏度轉化為華氏度,不知道為什麼F = (9/5)C+32中的C 是invalid code,用python編的
應該是
F = (9/5)*C+32
少了運算符
⑨ python能做什麼有趣的東西
python能做什麼有趣的東西?下面給大家介紹35個Python實例:
1. Python3 實現圖片識別
2. Python3 圖片隱寫術
3. 200 行 Python 代碼實現 2048
4. Python實現3D建模工具
5. 使用 Python 定製詞雲
相關推薦:《Python教程》
6. Python3 智能裁切圖片
7.微信變為聊天機器人
8. 使用 Python 解數學方程
9. 使用 Python 創建照片馬賽克
10. Python 基於共現提取《釜山行》人物關系
11. Python 氣象數據分析:《Python 數據分析實戰》
12. NBA常規賽結果預測:利用Python進行比賽數據分析
13. Python 的循環語句和隱含波動率的計算
14. K-近鄰演算法實現手寫數字識別系統
15. 數獨游戲的 Python 實現與破解
16. 基於 Flask 與 MySQL 實現番劇推薦系
17. Python 實現英文新聞摘要自動提取
18. Python 解決哲學家就餐問題
19. Ebay 在線拍賣數據分析
20. 神經網路實現人臉識別任務
21. 使用 Python 解數學方程
22. Python3 實現火車票查詢工具
23. Python 實現埠掃描器
24. Python3 實現可控制肉雞的反向Shell
25. Python 實現 FTP 弱口令掃描器
26. 基於PyQt5 實現地圖中定位相片拍攝位置
27. Python實現網站模擬登陸
28.Python實現簡易區域網視頻聊天工具
29. 基於 TCP 的 python 聊天程序
30. Python3基於Scapy實現DDos
31. 高德API + Python 解決租房問題
32. 基於 Flask 與 RethinkDB 實現TODO List
33. Python3 實現簡單的 Web 伺服器
34. Python 實現 Redis 非同步客戶端
35. 仿 StackOverflow 開發在線問答系統
⑩ 天氣預報基本成型需要經過幾個步驟
現代天氣預報有五個組成部分:
1、收集數據
最傳統的數據是在地面或海面上通過專業人員、愛好者、自動氣象站或者浮標收集的氣壓、氣溫、風速、風向、濕度等數據。世界氣象組織協調這些數據採集的時間,並制定標准。這些測量分每小時一次(METAR)或者每六小時一次(SYNOP)。
氣象衛星的數據越來越重要。氣象衛星可以採集全世界的數據。它們的可見光照片可以幫助氣象學家來檢視雲的發展。它們的紅外線數據可以用來收集地面和雲頂的溫度。通過監視雲的發展可以收集雲的邊緣的風速和風向。不過由於氣象衛星的精確度和解析度還不夠好,因此地面數據依然非常重要。
2、數據同化
在數據同化的過程中被採集的數據與用來做預報的數字模型結合在一起來產生氣象分析。其結大氣狀態的最好估計,它是一個三維的溫度、濕度、氣壓和風速、風向的表示。
3、數據天氣
按照物理學和流體力學的結果來計算大氣隨時間的變化。
4、輸出處理
模型計算的原始輸出一般要經過加工處理後才能成為天氣預報。這些處理包括使用統計學的原理來消除已知的模型中的偏差,或者參考其它模型計算結果進行調整。
5、製作過程
根據有關部門提供的數據在電腦上製作全國氣象形勢圖表(就是天氣預報節目的背景圖);主持人站在一塊藍幕前「指指點點」,講解天氣(如何把握各個地區的位置,主持人只有一個秘訣——死記硬背);影視中心進行影像合成,在電腦上用圖表代替藍幕;影視中心將製作完畢的節目傳送到中央電視台。
(10)合成分析方法氣象python擴展閱讀
在收聽天氣預報時,常常聽到「今天白天」、「今天夜間」等時間用語和「多雲」、「陰」、「晴」等氣象用語。
「今天白天」是指上午8:00到晚上20:00這12個小時;「今天夜間」指20:00到次日早上8:00這12個小時。「晴」指雲量佔10—30%;「多雲」指雲量佔40—70%;「陰」指雲量佔80—100%。
氣象單位對降水量標準的規定,有12小時和24小時兩種標准。12小時降水量級標準是:「小雨」指的是降水量0.6—5毫米;「中雨」的降水量5.1—15毫米;「大雨」15.1—30毫米;「暴雨」30.1—70毫米;「大暴雨」70.1—200毫米。
24小時降水量級標準是:「小雨」降水量指的是1—10毫米;「中雨」的降水量指的是10.1—25毫米;「大雨」降水量指的是25.1—50毫米;「暴雨」指的是50.1—100毫米;「大暴雨」是100.1—250毫米的降水量。預報時間沒有超過12小時,就是指12小時降水量級標准。
如果預報今天白天或晚上有雨雪,則指的是12小時內的降雪。如果預報今天白天到夜間有中到大雪,則指的是24小時內的降水量。除12.24小時預報外,還有48小時預報,72小時預報,還有未來天氣分析等。
因為氣象局每日提供給電視台,廣播台,各大報紙的預報只有三次:早上,中午,晚上。對於突然的天氣變化不能及時地作出預報,怎樣才能及時地了解到突然的天氣變化情況呢。從2009年9月開始,中國開通了121氣象熱線。
平均每兩小時就有一次新的預報,及時准確,方便快捷。例如揚州的121氣象熱線,可以同時接聽60門電話,話費與普通的市話相等。大多數城市氣象台(局)都開通官方天氣微博。