㈠ 急求java 遺傳演算法實現排課功能(控制台程序)的代碼
關於交叉的疑問,不就是父親和母親隨機位上的基因進行交換得到孩子的基因,後面一句」然後選擇所有基因位上的數總和最大的染色體C1「就不明白了。
㈡ Java通過幾種經典的演算法來實現數組排序
JAVA中在運用數組進行排序功能時,一般有四種方法:快速排序法、冒泡法、選擇排序法、插入排序法。
快速排序法主要是運用了Arrays中的一個方法Arrays.sort()實現。
冒泡法是運用遍歷數組進行比較,通過不斷的比較將最小值或者最大值一個一個的遍歷出來。
選擇排序法是將數組的第一個數據作為最大或者最小的值,然後通過比較循環,輸出有序的數組。
插入排序是選擇一個數組中的數據,通過不斷的插入比較最後進行排序。下面我就將他們的實現方法一一詳解供大家參考。
<1>利用Arrays帶有的排序方法快速排序
public class Test2{ public static void main(String[] args){ int[] a={5,4,2,4,9,1}; Arrays.sort(a); //進行排序 for(int i: a){ System.out.print(i); } } }
<2>冒泡排序演算法
public static int[] bubbleSort(int[] args){//冒泡排序演算法 for(int i=0;i<args.length-1;i++){ for(int j=i+1;j<args.length;j++){ if (args[i]>args[j]){ int temp=args[i]; args[i]=args[j]; args[j]=temp; } } } return args; }
<3>選擇排序演算法
public static int[] selectSort(int[] args){//選擇排序演算法 for (int i=0;i<args.length-1 ;i++ ){ int min=i; for (int j=i+1;j<args.length ;j++ ){ if (args[min]>args[j]){ min=j; } } if (min!=i){ int temp=args[i]; args[i]=args[min]; args[min]=temp; } } return args; }
<4>插入排序演算法
public static int[] insertSort(int[] args){//插入排序演算法 for(int i=1;i<args.length;i++){ for(int j=i;j>0;j--){ if (args[j]<args[j-1]){ int temp=args[j-1]; args[j-1]=args[j]; args[j]=temp; }else break; } } return args; }
㈢ java排序演算法哪些
排序演算法有很多,從簡單的開始說吧,
如冒泡:
for (int i = 0; i < nums1.length-1; i++) {
for (int j = 0; j < nums1.length-i-1; j++) {
if(nums1[j] > nums1[j+1]){
int temp = nums1[j];
nums1[j] = nums1[j + 1];
nums1[j + 1] = temp;
}
}
}
選擇:
for (int i = 0; i < nums.length; i++) {
int min= nums[i];
int minIndex = i;//記錄要交換元素的下標
for (int j = i + 1; j < nums.length; j++) {//內循環找最小值
if(min > nums[j]){
min = nums[j];
minIndex = j;
}
}
int temp = nums[i];
nums[i] = nums[minIndex];
nums[minIndex] = temp;
}
快速排序等等。
java中如果數組排序,可以直接用Arrays.sort();
㈣ java中有多少種排序演算法,分別是什麼
11種基本排序演算法
㈤ 數據結構 java開發中常用的排序演算法有哪些
排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。
主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序
一、冒泡(Bubble)排序
----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。
二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。
三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。
四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。
五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。
七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。
堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。
㈥ 怎麼做排課管理系統用java能做嗎怎麼做
可以做啊,
b/s或者c/s架構如樓上所說
演算法可以考慮採用貪心演算法或者遺傳演算法
主要是演算法的實現
每一種語言來做都可以.
㈦ 這幾天為排課演算法想得頭都要炸裂了,團長可否指點下,最好是有源碼,java
說下需求
㈧ JAVA 全排列演算法
遞歸實現,取數字(字元串)中第i個位置的字元,然後將他和剩餘的字元拼接,剩餘的字元串當成有一個全排列的輸入,這樣遞歸下去,只剩一個字元時全排列就是本身。程序中使用set去除了重復的數據,如果需要保留,將set換為list介面即可。
package mytest;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set;
/*
* @date:2012-2-8
* @author:
*
* 輸入一個數字,講輸出 1到這個數字的全排列
*/
public class MyDemo2 {
private static Set<String> SET_STRING = new HashSet<String>();
private static Set<Long> SET_NUM = new HashSet<Long>();
public static void main(String[] args) {
System.out.println("begin ...... ");
testLong(234);
testString("a23");
print(SET_NUM);
print(SET_STRING);
System.out.println("end ...... ");
}
/**
* 測試數字
* @param num
*/
private static void testLong(long num){
long testNum = num;
String[] permutation;
for(long l=0; l<=testNum; l++){
permutation = getAllOrder(String.valueOf(l));
for (int i = 0; i < permutation.length; i++) {
SET_NUM.add(Long.valueOf(permutation[i]));
}
}
}
/**
* 測試字元串
* @param str
*/
private static void testString(String str){
String[] permutation = getAllOrder(str);
for (int i = 0; i < permutation.length; i++) {
SET_STRING.add(permutation[i]);
}
}
private static void print(Set set){
System.out.println("/*****************************************************/");
int i=0;
for(Iterator it = set.iterator(); it.hasNext();){
i++;
if(i%10 == 0){
System.out.println();
}
System.out.print(it.next() + " ");
}
System.out.println();
System.out.println("/*****************************************************/");
}
/**
* 遞歸演算法 全排列 去除重復
* @param str
* @return
*/
private static String[] getAllOrder(String str) {
String [] arrResult = null;
Set<String> set = new HashSet<String>();
if(str.length()>1){
String result = "";
String charXInString;
String remainString;
for (int i = 0; i < str.length(); i++) {
charXInString = str.charAt(i) + "";
remainString = str.substring(0, i)+ str.substring(i + 1, str.length());
for (String element : getAllOrder(remainString)) {
result = charXInString + element;
set.add(result);
}
}
arrResult = set.toArray(new String[set.size()]);
}else{
arrResult = new String[]{str};
}
return arrResult;
}
}
㈨ java中排序演算法代碼
package temp;
import sun.misc.Sort;
/**
* @author zengjl
* @version 1.0
* @since 2007-08-22
* @Des java幾種基本排序方法
*/
/**
* SortUtil:排序方法
* 關於對排序方法的選擇:這告訴我們,什麼時候用什麼排序最好。當人們渴望先知道排在前面的是誰時,
* 我們用選擇排序;當我們不斷拿到新的數並想保持已有的數始終有序時,我們用插入排序;當給出的數
* 列已經比較有序,只需要小幅度的調整一下時,我們用冒泡排序。
*/
public class SortUtil extends Sort {
/**
* 插入排序法
* @param data
* @Des 插入排序(Insertion Sort)是,每次從數列中取一個還沒有取出過的數,並按照大小關系插入到已經取出的數中使得已經取出的數仍然有序。
*/
public int[] insertSort(int[] data) {
1/11頁
int temp;
for (int i = 1; i < data.length; i++) {
for (int j = i; (j > 0) && (data[j] < data[j - 1]); j--) {
swap(data, j, j - 1);
}
}
return data;
}
/**
* 冒泡排序法
* @param data
* @return
* @Des 冒泡排序(Bubble Sort)分為若干趟進行,每一趟排序從前往後比較每兩個相鄰的元素的大小(因此一趟排序要比較n-1對位置相鄰的數)並在
* 每次發現前面的那個數比緊接它後的數大時交換位置;進行足夠多趟直到某一趟跑完後發現這一趟沒有進行任何交換操作(最壞情況下要跑n-1趟,
* 這種情況在最小的數位於給定數列的最後面時發生)。事實上,在第一趟冒泡結束後,最後面那個數肯定是最大的了,於是第二次只需要對前面n-1
* 個數排序,這又將把這n-1個數中最小的數放到整個數列的倒數第二個位置。這樣下去,冒泡排序第i趟結束後後面i個數都已經到位了,第i+1趟實
* 際上只考慮前n-i個數(需要的比較次數比前面所說的n-1要小)。這相當於用數學歸納法證明了冒泡排序的正確性
㈩ 求java排課演算法
你可以選擇把課做成String[ ];
然後隨機產生數組下標,如果要不重復的,就可以在循環里做