❶ 串口通信如何使用MODBUS協議舉個C語言的例子。
Modbus兩種協議的編程方法:
1、LRC校驗
LRC域是一個包含一個8位二進制值的位元組。LRC值由傳輸設備來計算並放到消息幀中,接收設備在接收消息的過程中計算LRC,並將它和接收到消息中LRC域中的值比較,如果兩值不等,說明有錯誤。
LRC校驗比較簡單,它在ASCII協議中使用,檢測了消息域中除開始的冒號及結束的回車換行號外的內容。它僅僅是把每一個需要傳輸的數據按位元組疊加後取反加1即可。下面是它對應的代碼:
BYTE GetCheckCode(const char * pSendBuf, int nEnd)//獲得校驗碼
{
BYTE byLrc = 0;
char pBuf[4];
int nData = 0;
for(i=1; i<end; i+=2) //i初始為1,避開「開始標記」冒號
{
//每兩個需要發送的ASCII碼轉化為一個十六進制數
pBuf [0] = pSendBuf [i];
pBuf [1] = pSendBuf [i+1];
pBuf [2] = '\0';
sscanf(pBuf,"%x",& nData);
byLrc += nData;
}
byLrc = ~ byLrc;
byLrc ++;
return byLrc;
}
2、CRC校驗
CRC域是兩個位元組,包含一16位的二進制值。它由傳輸設備計算後加入到消息中。接收設備重新計算收到消息的CRC,並與接收到的CRC域中的值比較,如果兩值不同,則有誤。
CRC是先調入一值是全「1」的16位寄存器,然後調用一過程將消息中連續的8位位元組各當前寄存器中的值進行處理。僅每個字元中的8Bit數據對CRC有效,起始位和停止位以及奇偶校驗位均無效。
CRC產生過程中,每個8位字元都單獨和寄存器內容相或(OR),結果向最低有效位方向移動,最高有效位以0填充。LSB被提取出來檢測,如果LSB為1,寄存器單獨和預置的值或一下,如果LSB為0,則不進行。整個過程要重復8次。在最後一位(第8位)完成後,下一個8位位元組又單獨和寄存器的當前值相或。最終寄存器中的值,是消息中所有的位元組都執行之後的CRC值。
CRC添加到消息中時,低位元組先加入,然後高位元組。下面是它對應的代碼:
WORD GetCheckCode(const char * pSendBuf, int nEnd)//獲得校驗碼
{
WORD wCrc = WORD(0xFFFF);
for(int i=0; i<nEnd; i++)
{
wCrc ^= WORD(BYTE(pSendBuf[i]));
for(int j=0; j<8; j++)
{
if(wCrc & 1)
{
wCrc >>= 1;
wCrc ^= 0xA001;
}
else
{
wCrc >>= 1;
}
}
}
return wCrc;
}
對於一條RTU協議的命令可以簡單的通過以下的步驟轉化為ASCII協議的命令:
1、 把命令的CRC校驗去掉,並且計算出LRC校驗取代。
2、 把生成的命令串的每一個位元組轉化成對應的兩個位元組的ASCII碼,比如0x03轉化成0x30,0x33(0的ASCII碼和3的ASCII碼)。
3、 在命令的開頭加上起始標記「:」,它的ASCII碼為0x3A。
4、 在命令的尾部加上結束標記CR,LF(0xD,0xA),此處的CR,LF表示回車和換行的ASCII碼。
掌握兩種協議的編程方法,剩下的就是C語言的問題了。
悉雨辰寂
❷ modbus tcp 協議的c語言怎麼寫
如果用C語言編程實現MODBUS通訊,難度還是很大的。首先需要實現TCP通訊,這裡面涉及到TCP偵聽模塊、TCP數據收發模塊、斷線重連模塊、如果是多信道連接,還需要處理多信道並行通訊等。在實現了TCP通訊核心程序的基礎上,通過數據發送程序模塊,按照MODBUS指令格式,向前端設備發出正確的MODBUS指令(RTU或ASCII)即可,然後就是通過數據接收模塊等待接收前端返回的MODBUS數據包,這就還要編寫MODBUS指令生成模塊,MODBUS數據解析模塊。
上述只是一個大致的思路,裡面涉及的編程技術很多,有的技術環節還是很有挑戰性的,比如大規模多信道並行通訊。
❸ 求助:誰能給我一份用C編寫的Modbus程序
modbus程序應包含通訊模塊,modbus讀寫指令生成模塊,人機交互等主要組成部分。通過人機交互,設定前端設備id,以及通訊參數,寄存器地址等,通過modbus指令生成模塊生成指令,並將指令通過通訊模塊送出,並接收返回數據 ,數據解析後通過人機交...
❹ C語言如何編寫modbus RTU協議
如果你想了解MODBUS-RTU,看看下面這個鏈接。
http://www.360doc.com/content/14/0120/10/7991404_346584755.shtml
網上MODBUS-RTU的實例很多,你可以借鑒。
但是,協議這個東西不是變成達到的,它是在程序設計之前就要擬定好,協議定好以後才有C程序按照協議制定的來編寫。針對modbus-rtu來說,你需要把鏈接里第二部分的協議基本約定看懂之後,再來著手。
加油吧。這個會花些時間。
❺ 關於C#編寫modbus通訊協議的求助
Modbus 協議是應用於電子控制器上的一種通用語言。通過此協議,控制器相互之間、控制器經由網路(例如乙太網)和其它設備之間可以通信。它已經成為一通用工業標准。有了它,不同廠商生產的控制設備可以連成工業網路,進行集中監控。
此協議定義了一個控制器能認識使用的消息結構,而不管它們是經過何種網路進行通信的。它描述了一控制器請求訪問其它設備的過程,如果回應來自其它設備的請求,以及怎樣偵測錯誤並記錄。它制定了消息域格局和內容的公共格式。
當在一Modbus網路上通信時,此協議決定了每個控制器須要知道它們的設備地址,識別按地址發來的消息,決定要產生何種行動。如果需要回應,控制器將生成反饋信息並用Modbus協議發出。在其它網路上,包含了Modbus協議的消息轉換為在此網路上使用的幀或包結構。這種轉換也擴展了根據具體的網路解決節地址、路由路徑及錯誤檢測的方法。
1、在Modbus網路上轉輸
標準的Modbus口是使用一RS-232C兼容串列介面,它定義了連介面的針腳、電纜、信號位、傳輸波特率、奇偶校驗。控制器能直接或經由Modem組網。
控制器通信使用主—從技術,即僅一設備(主設備)能初始化傳輸(查詢)。其它設備(從設備)根據主設備查詢提供的數據作出相應反應。典型的主設備:主機和可編程儀表。典型的從設備:可編程式控制制器。
主設備可單獨和從設備通信,也能以廣播方式和所有從設備通信。如果單獨通信,從設備返回一消息作為回應,如果是以廣播方式查詢的,則不作任何回應。Modbus協議建立了主設備查詢的格式:設備(或廣播)地址、功能代碼、所有要發送的數據、一錯誤檢測域。
從設備回應消息也由Modbus協議構成,包括確認要行動的域、任何要返回的數據、和一錯誤檢測域。如果在消息接收過程中發生一錯誤,或從設備不能執行其命令,從設備將建立一錯誤消息並把它作為回應發送出去。
2、在其它類型網路上轉輸
在其它網路上,控制器使用對等技術通信,故任何控制都能初始和其它控制器的通信。這樣在單獨的通信過程中,控制器既可作為主設備也可作為從設備。提供的多個內部通道可允許同時發生的傳輸進程。
在消息位,Modbus協議仍提供了主—從原則,盡管網路通信方法是「對等」。如果一控制器發送一消息,它只是作為主設備,並期望從從設備得到回應。同樣,當控制器接收到一消息,它將建立一從設備回應格式並返回給發送的控制器。
3、查詢—回應周期
(1)查詢
查詢消息中的功能代碼告之被選中的從設備要執行何種功能。數據段包含了從設備要執行功能的任何附加信息。例如功能代碼03是要求從設備讀保持寄存器並返回它們的內容。數據段必須包含要告之從設備的信息:從何寄存器開始讀及要讀的寄存器數量。錯誤檢測域為從設備提供了一種驗證消息內容是否正確的方法。
(2)回應
如果從設備產生一正常的回應,在回應消息中的功能代碼是在查詢消息中的功能代碼的回應。數據段包括了從設備收集的數據:象寄存器值或狀態。如果有錯誤發生,功能代碼將被修改以用於指出回應消息是錯誤的,同時數據段包含了描述此錯誤信息的代碼。錯誤檢測域允許主設備確認消息內容是否可用。
二、兩種傳輸方式
控制器能設置為兩種傳輸模式(ASCII或RTU)中的任何一種在標準的Modbus網路通信。用戶選擇想要的模式,包括串口通信參數(波特率、校驗方式等),在配置每個控制器的時候,在一個Modbus網路上的所有設備都必須選擇相同的傳輸模式和串口參數。
ASCII模式
:
地址
功能代碼
數據數量
數據1
...
數據n
LRC高位元組
LRC低位元組
回車
換行
RTU模式
地址
功能代碼
數據數量
數據1
...
數據n
CRC低位元組
CRC高位元組
所選的ASCII或RTU方式僅適用於標準的Modbus網路,它定義了在這些網路上連續傳輸的消息段的每一位,以及決定怎樣將信息打包成消息域和如何解碼。
在其它網路上(象MAP和Modbus Plus)Modbus消息被轉成與串列傳輸無關的幀。
1、ASCII模式
當控制器設為在Modbus網路上以ASCII(美國標准信息交換代碼)模式通信,在消息中的每個8Bit位元組都作為兩個ASCII字元發送。這種方式的主要優點是字元發送的時間間隔可達到1秒而不產生錯誤。
代碼系統
· 十六進制,ASCII字元0...9,A...F
· 消息中的每個ASCII字元都是一個十六進制字元組成
每個位元組的位
· 1個起始位
· 7個數據位,最小的有效位先發送
· 1個奇偶校驗位,無校驗則無
· 1個停止位(有校驗時),2個Bit(無校驗時)
錯誤檢測域
· LRC(縱向冗長檢測)
2、RTU模式
當控制器設為在Modbus網路上以RTU(遠程終端單元)模式通信,在消息中的每個8Bit位元組包含兩個4Bit的十六進制字元。這種方式的主要優點是:在同樣的波特率下,可比ASCII方式傳送更多的數據。
代碼系統
· 8位二進制,十六進制數0...9,A...F
· 消息中的每個8位域都是一個兩個十六進制字元組成
· 每個位元組的位
· 1個起始位
· 8個數據位,最小的有效位先發送
· 1個奇偶校驗位,無校驗則無
· 1個停止位(有校驗時),2個Bit(無校驗時)
錯誤檢測域
· CRC(循環冗長檢測)
三、Modbus消息幀
兩種傳輸模式中(ASCII或RTU),傳輸設備以將Modbus消息轉為有起點和終點的幀,這就允許接收的設備在消息起始處開始工作,讀地址分配信息,判斷哪一個設備被選中(廣播方式則傳給所有設備),判知何時信息已完成。部分的消息也能偵測到並且錯誤能設置為返回結果。
1、ASCII幀
使用ASCII模式,消息以冒號(:)字元(ASCII碼 3AH)開始,以回車換行符結束(ASCII碼 0DH,0AH)。
其它域可以使用的傳輸字元是十六進制的0...9,A...F。網路上的設備不斷偵測「:」字元,當有一個冒號接收到時,每個設備都解碼下個域(地址域)來判斷是否發給自己的。
消息中字元間發送的時間間隔最長不能超過1秒,否則接收的設備將認為傳輸錯誤。一個典型消息幀如下所示:
起始位
設備地址
功能代碼
數據
LRC校驗
結束符
1個字元
2個字元
2個字元
n個字元
2個字元
2個字元
圖2 ASCII消息幀
2、RTU幀
使用RTU模式,消息發送至少要以3.5個字元時間的停頓間隔開始。在網路波特率下多樣的字元時間,這是最容易實現的(如下圖的T1-T2-T3-T4所示)。傳輸的第一個域是設備地址。可以使用的傳輸字元是十六進制的0...9,A...F。網路設備不斷偵測網路匯流排,包括停頓間隔時間內。當第一個域(地址域)接收到,每個設備都進行解碼以判斷是否發往自己的。在最後一個傳輸字元之後,一個至少3.5個字元時間的停頓標定了消息的結束。一個新的消息可在此停頓後開始。
整個消息幀必須作為一連續的流轉輸。如果在幀完成之前有超過1.5個字元時間的停頓時間,接收設備將刷新不完整的消息並假定下一位元組是一個新消息的地址域。同樣地,如果一個新消息在小於3.5個字元時間內接著前個消息開始,接收的設備將認為它是前一消息的延續。這將導致一個錯誤,因為在最後的CRC域的值不可能是正確的。一典型的消息幀如下所示:
起始位
設備地址
功能代碼
數據
CRC校驗
結束符
T1-T2-T3-T4
8Bit
8Bit
n個8Bit
16Bit
T1-T2-T3-T4
圖3 RTU消息幀
3、地址域
消息幀的地址域包含兩個字元(ASCII)或8Bit(RTU)。可能的從設備地址是0...247 (十進制)。單個設備的地址范圍是1...247。主設備通過將要聯絡的從設備的地址放入消息中的地址域來選通從設備。當從設備發送回應消息時,它把自己的地址放入回應的地址域中,以便主設備知道是哪一個設備作出回應。
地址0是用作廣播地址,以使所有的從設備都能認識。當Modbus協議用於更高水準的網路,廣播可能不允許或以其它方式代替。
4、如何處理功能域
消息幀中的功能代碼域包含了兩個字元(ASCII)或8Bits(RTU)。可能的代碼范圍是十進制的1...255。當然,有些代碼是適用於所有控制器,有此是應用於某種控制器,還有些保留以備後用。
當消息從主設備發往從設備時,功能代碼域將告之從設備需要執行哪些行為。例如去讀取輸入的開關狀態,讀一組寄存器的數據內容,讀從設備的診斷狀態,允許調入、記錄、校驗在從設備中的程序等。
當從設備回應時,它使用功能代碼域來指示是正常回應(無誤)還是有某種錯誤發生(稱作異議回應)。對正常回應,從設備僅回應相應的功能代碼。對異議回應,從設備返回一等同於正常代碼的代碼,但最重要的位置為邏輯1。
例如:一從主設備發往從設備的消息要求讀一組保持寄存器,將產生如下功能代碼:
0 0 0 0 0 0 1 1 (十六進制03H)
對正常回應,從設備僅回應同樣的功能代碼。對異議回應,它返回:
1 0 0 0 0 0 1 1 (十六進制83H)
除功能代碼因異議錯誤作了修改外,從設備將一獨特的代碼放到回應消息的數據域中,這能告訴主設備發生了什麼錯誤。
主設備應用程序得到異議的回應後,典型的處理過程是重發消息,或者診斷發給從設備的消息並報告給操作員。
5、數據域
數據域是由兩個十六進制數集合構成的,范圍00...FF。根據網路傳輸模式,這可以是由一對ASCII字元組成或由一RTU字元組成。
從主設備發給從設備消息的數據域包含附加的信息:從設備必須用於進行執行由功能代碼所定義的所為。這包括了象不連續的寄存器地址,要處理項的數目,域中實際數據位元組數。
例如,如果主設備需要從設備讀取一組保持寄存器(功能代碼03),數據域指定了起始寄存器以及要讀的寄存器數量。如果主設備寫一組從設備的寄存器(功能代碼10十六進制),數據域則指明了要寫的起始寄存器以及要寫的寄存器數量,數據域的數據位元組數,要寫入寄存器的數據。
如果沒有錯誤發生,從從設備返回的數據域包含請求的數據。如果有錯誤發生,此域包含一異議代碼,主設備應用程序可以用來判斷採取下一步行動。
在某種消息中數據域可以是不存在的(0長度)。例如,主設備要求從設備回應通信事件記錄(功能代碼0B十六進制),從設備不需任何附加的信息。
6、錯誤檢測域
標準的Modbus網路有兩種錯誤檢測方法。錯誤檢測域的內容視所選的檢測方法而定。
ASCII
當選用ASCII模式作字元幀,錯誤檢測域包含兩個ASCII字元。這是使用LRC(縱向冗長檢測)方法對消息內容計算得出的,不包括開始的冒號符及回車換行符。LRC字元附加在回車換行符前面。
RTU
當選用RTU模式作字元幀,錯誤檢測域包含一16Bits值(用兩個8位的字元來實現)。錯誤檢測域的內容是通過對消息內容進行循環冗長檢測方法得出的。CRC域附加在消息的最後,添加時先是低位元組然後是高位元組。故CRC的高位位元組是發送消息的最後一個位元組。
7、字元的連續傳輸
當消息在標準的Modbus系列網路傳輸時,每個字元或位元組以如下方式發送(從左到右):
最低有效位...最高有效位
❻ 51單片機C語言怎麼寫Modbus通信程序
Modbus通信程序就是串口,只是比串口復雜點而已
❼ 01 03 02 00 00 B8 44modbus用C語言怎麼編寫
你說的MODBUS指令是錯誤的,MODBUS指令至少八位元組,一位元組設備ID,一位元組指令碼,兩位元組偏移量,兩位元組寄存器個數,兩位元組CRC16,寫指令還需要加上若干位元組的寫入數據。C語言描述MODBUS指令,只需要聲明一個位元組數組即可,數組長度等於指令位元組數量,然後將指令的各個位元組數值依次寫入到數組,然後再將這個數組發送出去即可。
❽ modbus通訊協議在PLC上怎麼使用,舉個例子,詳細點最好!
通常PLC的使用說明書上有通信協議的格式,大多採用Modbus協議,要例子可以用類似格西烽火之類的軟體,自帶了Modbus協議測試例子。
❾ 單片機MODBUS RTU 作主機C程序
modbus的基本部分有現成的,自己寫也不難,一般03和06指令用的最多,基本就夠了.比較難的是數據分包檢測,這塊得根據你的mcu具體來做.
關於指令中的處理這部分只能自己寫了.
❿ 用c語言編寫modbus程序
#ifdef MODBUS
//
//******************************************************************************
// CRC 16 Data Table
// *****************
const unsigned int crc_tbl[256]={
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xb981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040};
//#pragma end_abs_address
//******************************************************************************
//
#define DEFAULT_ADDRESS 1 // all slaves start with this Modbus address
// communication commands:
//#define CHOOSE_SLOT 0x80
//#define POLL_SLOT 0x81
//#define POLL_ACK 0x82
// positions in a Modbus packet
#define ADDR 0
#define FCN 1
#define REGHI 2
#define REGLO 3
#define NUMREGSHI 4
#define NUMREGSLO 5
#define OUTBYTES 2
// Modbus exception codes
#define FCN_NOT_SUPPORTED 1 // a Modbus function code we can't
handle
#define BAD_ADDR_OR_CMD 2 // a Modbus "register"
(command or address to us) we don't know
#define BAD_COUNT 3 // num regs != num bytes
* 2
#define CMD_NOT_COMPLETE 4 // command didn't complete
successfully
// other defines
#define IN 0
#define OUT 1
//
// SLOT_NUMBER is the 2 byte device configuration
// the first byte is the ID
// the second byte is the transmission mode coded as follows:
// bit 0x01: 0=19200, 1=9600 baud
// bit 0x02: 0=even parity, 1=odd parity
// bit 0x04: 0=parity, 1=no parity
// bit 0x08: 0=1 stop bit, 1=2 stop bits
// if bit 0x04 is set and bit 0x08 is not set then it's 8
bit mode (vs 9 bit mode)
//
//unsigned char receiveBuffer[32] = {0}; // Reserve 32 bytes for packet.
unsigned char device_addr = DEFAULT_ADDRESS; // assigned device address - start
with disconnected
//unsigned char timeout_counter = 10;
//unsigned char timeout_ration = 10; // seconds, default
//unsigned char pkt_index = 0;
// return number of bytes in packet, not including crc
unsigned char MDB_get_length(unsigned char in_out, unsigned char* ptr)
{
if(comControlByte & 0x20)
return 6;
switch(*(ptr+FCN))
{
case 0x06: // write single reg
return 6;
case 0x03: // read multiple regs
if (in_out == IN) // incoming packet
return 6;
else
return *(ptr+OUTBYTES) + 3;
case 0x10: // write multiple regs
return (*(ptr+NUMREGSLO) << 1) + 7;
default: // assume error packet
return 3;
}
}
// calculate CRC16 on a packet
unsigned int MDB_crc_calc(unsigned char in_out, unsigned char* ptr)
{
unsigned char c1, c2;
unsigned int crc = 0xffff;
// initial value
unsigned char* ptr_pkt_hdr = ptr;
c2 = MDB_get_length(in_out,ptr);
for(c1=0; c1<c2; c1++)
crc = ((crc >> 8) & 0xFF) ^ crc_tbl[(crc ^ *ptr_pkt_hdr++) & 0xFF];
return crc;
}
// check crc on an incoming packet
unsigned char MDB_crc_check(unsigned char* ptr)
{
unsigned int i1;
unsigned char c1, c2, c3;
i1 = MDB_crc_calc(IN, ptr);
c1 = *(ptr+MDB_get_length(IN,ptr)+1); // msb of incoming crc
c2 = *(ptr+MDB_get_length(IN,ptr)); // lsb of
incoming crc
c3 = (i1 >> 8);
// msb of calculated crc
if((c2 == (i1 & 0x00FF)) && (c1 == c3)) // compare msb
& lsb
return 1;
else
return 0;
}
// send Modbus packets
void MDB_pkt_sender(unsigned char* ptr)
{
unsigned char idx, pkt_len;
unsigned int i1;
// append crc, lsb 1st
i1 = MDB_crc_calc(OUT,ptr);
pkt_len = MDB_get_length(OUT,ptr);
*(ptr+pkt_len++) = (unsigned char)i1; // lsb
*(ptr+pkt_len++) = (i1 >> 8); // msb
//SCI1C2 = 0x08; // transmit enable
//comLedOn();
PTGD |= 0x80;
for (idx = 0; idx < pkt_len; idx++)
{
while(!(SCI1S1 & 0x80)); // wait for tdre=1
i1 = SCI1S1;
SCI1D = *(ptr+idx);
}
while(!(SCI1S1 & 0x80));
while(!(SCI1S1 & 0x40));
//comLedOff();
PTGD &= 0x7f;
//SCI1C2 = 0x2c; // back to receive mode
}
// return a Modbus error packet
void MDB_error(unsigned char exp_code, unsigned char* ptr)
{
*(ptr+FCN) |= 0x80; // set error code
*(ptr+FCN+1) = exp_code; // set exception code
MDB_pkt_sender(ptr);
}
//
void MDB_read_data(unsigned char* ptr)
{
if(get_data((ptr+2), *(ptr+3)))
{
// get_data() sticks the length of the data in
receiveBuffer[2]
// receiveBuffer[3] & on will have actual data
// receiveBuffer[0] & receiveBuffer[1] unchanged
MDB_pkt_sender(ptr); // appends CRC before sending
}
else
MDB_error(BAD_ADDR_OR_CMD, ptr);
}
// handle data writes
void MDB_write_data(unsigned char* ptr)
{
if((*(ptr+5)<<1) == *(ptr+6))
{
switch(*(ptr+3))//receiveBuffer[3])
{
//case 0x18: // new timeout value
// timeout_ration = receiveBuffer[7];
// MDB_pkt_sender(); // echo
received command
// break;
//case 0x63: // lamp test
// clampTest = 40;
// MDB_pkt_sender(); // echo
received command
// break;
case ADDRESS:
//if(receiveBuffer[8] &&
(receiveBuffer[8] < 248)) // valid addresses
if(*(ptr+8) && (*(ptr+8) < 248))
{
//device_addr = *
(ptr+8); // not until reset
nonvolatile[0] = *(ptr+8);
// device ID
nonvolatile[1] = *(ptr+7);
// transmission mode
nonvolatile[2] =
~nonvolatile[0];
nonvolatile[3] =
~nonvolatile[1];
writeToNonvolatile
(SLOT_NUMBER, &nonvolatile[0]);
comControlByte |= 0x20;
MDB_pkt_sender(ptr);
comControlByte &= 0xdf;
}
else
MDB_error
(BAD_ADDR_OR_CMD, ptr);
break;
case INSTALLATION_DATE: // installation
date
readFromNonvolatile(DATE_DATA,
&nonvolatile[0]);
nonvolatile[4] = *
(ptr+7);//receiveBuffer[7];
nonvolatile[5] = *
(ptr+8);//receiveBuffer[8];
nonvolatile[6] = *
(ptr+9);//receiveBuffer[9];
nonvolatile[7] = *
(ptr+10);//receiveBuffer[10];
nonvolatile[12] = ~nonvolatile[4];
nonvolatile[13] = ~nonvolatile[5];
nonvolatile[14] = ~nonvolatile[6];
nonvolatile[15] = ~nonvolatile[7];
writeToNonvolatile(DATE_DATA,
&nonvolatile[0]);
comControlByte |= 0x20;
MDB_pkt_sender(ptr); // echo
received command
comControlByte &= 0xdf;
break;
default:
MDB_error(BAD_ADDR_OR_CMD, ptr);
break;
}
}
else
MDB_error(BAD_COUNT, ptr);
}
//
void MDB_parse(char *bufPtr)
{
unsigned char i = 0;
if(MDB_crc_check(bufPtr))
{
if(*(bufPtr+ADDR) == device_addr)
{
switch(*(bufPtr+FCN))
{
case 0x03: // modbus read multiple
regs
MDB_read_data(bufPtr);
break;
case 0x10: // modbus write multiple
regs
MDB_write_data(bufPtr);
break;
default: // modbus function not
supported
MDB_error
(FCN_NOT_SUPPORTED, bufPtr);
break;
}
}
}
}