可以通過安裝pdfminer3k包,通過編程提取PDF相應的數據。
『貳』 1000個excel批量處理,求問怎麼用python導出每個excel里"2008年報」所在行至「2009年報「
excel 格式是怎樣的呢?
『叄』 如何用python計算增長率
增長率計算公式
n年數據的增長率=[(本期/前n年)或(1/(n-1))-1]×100%
同比增長率=(當年的指標值-去年同期的值)÷去年同期的值*100%
環比增長率=(本期的某個指標的值-上一期這個指標的值)/上一期這個指標的值
公式並不復雜,如果你有數據可以幫你看一下。
『肆』 python的量化代碼怎麼用到股市中
2010 ~ 2017 滬深A股各行業量化分析
在開始各行業的量化分析之前,我們需要先弄清楚兩個問題:
第一,A股市場上都有哪些行業;
第二,各行業自2010年以來的營收、凈利潤增速表現如何?
第一個問題
很好回答,我們使用JQData提供的獲取行業成分股的方法,輸入get_instries(name='sw_l1')
得到申萬一級行業分類結果如下:它們分別是:【農林牧漁、採掘、化工、鋼鐵、有色金屬、電子、家用電器、食品飲料、紡織服裝、輕工製造、醫葯生物、公用事業、交通運輸、房地產、商業貿易、休閑服務、綜合、建築材料、建築裝飾、電器設備、國防軍工、計算機、傳媒、通信、銀行、非銀金融、汽車、機械設備】共計28個行業。
第二個問題
要知道各行業自2010年以來的營收、凈利潤增速表現,我們首先需要知道各行業在各個年度都有哪些成分股,然後加總該行業在該年度各成分股的總營收和凈利潤,就能得到整個行業在該年度的總營收和總利潤了。這部分數據JQData也為我們提供了方便的介面:通過調用get_instry_stocks(instry_code=『行業編碼』, date=『統計日期』),獲取申萬一級行業指定日期下的行業成分股列表,然後再調用查詢財務的數據介面:get_fundamentals(query_object=『query_object』, statDate=year)來獲取各個成分股在對應年度的總營收和凈利潤,最後通過加總得到整個行業的總營收和總利潤。這里為了避免非經常性損益的影響,我們對凈利潤指標最終選取的扣除非經常性損益的凈利潤數據。
我們已經獲取到想要的行業數據了。接下來,我們需要進一步分析,這些行業都有什麼樣的增長特徵。
我們發現,在28個申萬一級行業中,有18個行業自2010年以來在總營收方面保持了持續穩定的增長。它們分別是:【農林牧漁,電子,食品飲料,紡織服裝,輕工製造,醫葯生物,公用事業,交通運輸,房地產,休閑服務,建築裝飾,電氣設備,國防軍工,計算機,傳媒,通信,銀行,汽車】;其他行業在該時間范圍內出現了不同程度的負增長。
那麼,自2010年以來凈利潤保持持續增長的行業又會是哪些呢?結果是只有5個行業保持了基業長青,他們分別是醫葯生物,建築裝飾,電氣設備,銀行和汽車。(註:由於申萬行業在2014年發生過一次大的調整,建築裝飾,電氣設備,銀行和汽車實際從2014年才開始統計。)
從上面的分析結果可以看到,真正能夠保持持續穩定增長的行業並不多,如果以扣非凈利潤為標准,那麼只有醫葯生物,建築裝飾,電氣設備,銀行和汽車這五個行業可以稱之為優質行業,實際投資中,就可以只從這幾個行業中去投資。這樣做的目的是,一方面,能夠從行業大格局層面避免行業下行的風險,繞開一個可能出現負增長的的行業,從而降低投資的風險;另一方面,也大大縮短了我們的投資范圍,讓投資者能夠專注於從真正好的行業去挑選公司進行投資。
「2010-2017」投資於優質行業龍頭的收益表現
選好行業之後,下面進入選公司環節。我們知道,即便是一個好的行業也仍然存在表現不好的公司,那麼什麼是好的公司呢,本文試圖從營業收入規模和利潤規模和來考察以上五個基業長青的行業,從它們中去篩選公司作為投資標的。
3.1按營業收入規模構建的行業龍頭投資組合
首先,我們按照營業收入規模,篩選出以上5個行業【醫葯生物,建築裝飾,電氣設備,銀行和汽車】從2010年至今的行業龍頭如下表所示:
通過以上行業分析和投資組合的歷史回測可以看到:
先選行業,再選公司,即使是從2015年股災期間開始投資,至2018年5月1號,仍然能夠獲得相對理想的收益,可以說,紅杉資本的賽道投資法則對於一般投資者還是比較靠譜的。
在構建行業龍頭投資組合時,凈利潤指標顯著優於營業收入指標,獲得的投資收益能夠更大的跑贏全市場收益率
市場是不斷波動的,如果一個投資者從股災期間開始投資,那麼即使他買入了上述優質行業的龍頭組合,在近3年也只能獲得12%左右的累計收益;而如果從2016年5月3日開始投資,那麼至2018年5月2日,2年時間就能獲得超過50%以上的收益了。所以,在投資過程中選擇時機也非常重要。
出自:JoinQuant 聚寬數據 JQData
『伍』 Python 如何爬股票數據
現在都不用爬數據拉,很多量化平台能提供數據介面的服務。像比如基礎金融數據,包括滬深A股行情數據,上市公司財務數據,場內基金數據,指數數據,期貨數據以及宏觀經濟數據;或者Alpha特色因子,技術分析指標因子,股票tick數據以及網路因子數據這些數據都可以在JQData這種數據服務中找到的。
有的供應商還能提供level2的行情數據,不過這種比較貴,幾萬塊一年吧
『陸』 python編程這門科目是用來編寫股票指標和選股器的嗎
python是一門語言補丁,最大的優勢在於擁有眾多的包,很多事情都可以做。而在數據分析領域提供了pandas,numpy,matplotlib等進行數據可視化,用於股票,自然也是可以的
『柒』 如何用Python寫一個抓取新浪財經網指定企業年報的腳本
代碼如下:
1). xml可能的中文編碼錯誤處理
def xml_Error_C(filename):
fp_xml=open(filename)
fp_x=''#中文亂碼改正
for i in range(os.path.getsize(filename)):
i+=1
a=fp_xml.read(1)
if a=='&':
fp_xml.seek(-1,1)
if fp_xml.read(6)==' ':
i+=5
continue
else:
fp_xml.seek(-5,1)
fp_x+=a
fp_xml=open(filename,'w+')
fp_xml.write(fp_x)
fp_xml.flush()
fp_xml.close()
2). xml轉xls
def Xmltoxls(xmlname,xlsname):
if os.path.getsize(xmlname)<1024:#小於1K,無該項數據
return False
wb=xlwt.Workbook(encoding='utf-8')
ws=wb.add_sheet('Table')
fp_xml=minidom.parse(xmlname)
root=fp_xml.documentElement
Row=root.getElementsByTagName('Row')
Data=root.getElementsByTagName('Data')
col_num=len(Data)/len(Row)
row_num= 0
for row in Row:
Data=row.getElementsByTagName('Data')
for i in range(col_num):
if len(Data[i].childNodes)==0:
ws.write(row_num,i,' ')
continue
ws.write(row_num,i,Data[i].childNodes[0].nodeValue.strip().encode('utf-8'))
row_num+=1
wb.save(xlsname)
return True上整體代碼:
from xml.dom import minidom
import xlwt
import os,shutil
import time,urllib2
def Xmltoxls(xmlname,xlsname):
if os.path.getsize(xmlname)<1024:
return False
wb=xlwt.Workbook(encoding='utf-8')
ws=wb.add_sheet('Table')
fp_xml=minidom.parse(xmlname)
root=fp_xml.documentElement
Row=root.getElementsByTagName('Row')
Data=root.getElementsByTagName('Data')
col_num=len(Data)/len(Row)
row_num= 0
for row in Row:
Data=row.getElementsByTagName('Data')
for i in range(col_num):
if len(Data[i].childNodes)==0:
ws.write(row_num,i,' ')
continue
ws.write(row_num,i,Data[i].childNodes[0].nodeValue.strip().encode('utf-8'))
row_num+=1
wb.save(xlsname)
return True
def xml_Error_C(filename):
fp_xml=open(filename)
fp_x=''#中文亂碼改正
for i in range(os.path.getsize(filename)):
i+=1
a=fp_xml.read(1)
if a=='&':
fp_xml.seek(-1,1)
if fp_xml.read(6)==' ':
i+=5
continue
else:
fp_xml.seek(-5,1)
fp_x+=a
fp_xml=open(filename,'w+')
fp_xml.write(fp_x)
fp_xml.flush()
fp_xml.close()
def errorlog(error):
fp_error=open('errorlog.txt','a')
fp_error.write(error+' ')
fp_error.close
fp_code=open('stockcode..txt')
fp_basic=open('basicdata_url.txt')
temp='z:\temp.xml'
for line in fp_code:#設置代碼起始位置
if line.split()[0]=='601958':
break
for line in fp_code:#遍歷所有代碼及名稱
filepath='basicdata\'+line.split()[0]+line.split()[1].replace('*','&')#建立文件夾
if not os.path.isdir(filepath):
os.makedirs(filepath)
for url in fp_basic:#抓取所有數據並保存
url_f=url.split()[0]+line.split()[0]+('01' if int(line.split()[0])>599999 else '02')+'&exp=1'
print 'I am handle '+line+' '+url.split()[1]+' '+'data for you'
filename=filepath+'\'+line.split()[0]+' '+url.split()[1]+'.xls'
while True:#get xml data
try:
u=urllib2.urlopen(url_f)
time.sleep(0.3)
data=u.read()
f=open(temp,'w+')#保存文件
f.write(data)
f.flush()
f.close()
break
except :
print 'Network error,try latter!'
time.sleep(10)
while True:#xml data to xls data
if url.split()[1] in ['News','Notice','Subject']:
shutil.move(temp,filename) # os.rename("oldname","newname")
break
try:
xml_Error_C(temp)
Xmltoxls(temp,filename)
except IOError:
errorlog('No '+filename)
except:
shutil.move(temp,filename)
errorlog('Not Done '+filename)
break
time.sleep(0.2)
time.sleep(7)
fp_basic.seek(0)
print 'All data have been getted.'
fp_code.close()
fp_basic.close()
『捌』 用python通過指標成本測算稅費和最終的利潤率
如果你要的是稅後價格.也就是你需要把利潤稅也加到價格中,那麼最終的價格=成本+利潤+利潤稅=成本+成本*利潤率+成本*利潤率*利潤稅率.這里利潤=利潤率*成本,利潤稅=利潤*稅率
『玖』 如何查找上市公司年報或財務報表
1、未公布年報的上市公司
登陸交易軟體,按F10,在「操盤必讀」里可以看到「擬披露年報」,上面顯示的時間就是該公司年報發布時間,在這個時間滬市A股登陸上交所網站、深市A股(含中小企業板和創業板)登陸深交所網站,就可以看到該公司年報。年報里有詳細財務報表。
2、已公布年報的上市公司
登陸上交所或深交所網站查詢。如滬市A股,直接登陸上交所網站,點擊「信息披露」,在「上市公司公告」旁邊方框內輸入要查詢的上市公司代碼,即可看到該公司所有已發布公告,當然也包括歷年的年報。