㈠ python爬蟲爬一個網站要多久
Python爬蟲爬取一個網站需要多久無法一概而論,需要結合多方面因素來決定,比如網站的頁面數量、你的爬蟲經驗、網站反爬蟲力度等,這些都會影響抓取時間。
㈡ 如何入門 Python 爬蟲
「入門」是良好的動機,但是可能作用緩慢。如果你手裡或者腦子里有一個項目,那麼實踐起來你會被目標驅動,而不會像學習模塊一樣慢慢學習。
如果你想要入門Python爬蟲,你需要做很多准備。首先是熟悉python編程;其次是了解HTML;
還要了解網路爬蟲的基本原理;最後是學習使用python爬蟲庫。
如果你不懂python,那麼需要先學習python這門非常easy的語言。編程語言基礎語法無非是數據類型、數據結構、運算符、邏輯結構、函數、文件IO、錯誤處理這些,學起來會顯枯燥但並不難。
剛開始入門爬蟲,你甚至不需要去學習python的類、多線程、模塊之類的略難內容。找一個面向初學者的教材或者網路教程,花個十幾天功夫,就能對python基礎有個三四分的認識了。
網路爬蟲的含義:
網路爬蟲,其實也可以叫做網路數據採集更容易理解。就是通過編程向網路伺服器請求數據(HTML表單),然後解析HTML,提取出自己想要的數據。
這會涉及到資料庫、網路伺服器、HTTP協議、HTML、數據科學、網路安全、圖像處理等非常多的內容。但對於初學者而言,並不需要掌握這么多。
㈢ 如何用Python做爬蟲
1)首先你要明白爬蟲怎樣工作。
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼實現呢?
很簡單
import Queue
initial_page = "初始化頁"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example
注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...
那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)
考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼於是寫成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(資料庫應該怎樣安排)
有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)
有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...
及時更新(預測這個網頁多久會更新一次)
如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。
所以,不要問怎麼入門,直接上路就好了:)
㈣ 學習Python爬蟲需要多久
Python是一門非常不錯的編程語言,該語言通俗易懂、容易上手,適合零基礎小白學習,也是初學者的首選;而網路爬蟲是Python的應用領域之一,相對於其他的領域來說,爬蟲學習起來是非常簡單的,掌握好基礎入門知識後就可以做爬蟲了,不過想要通過Python找工作,單純的學習爬蟲是不夠,也需要去涉及其他的領域,完全掌握Python這門語言參加培訓需要4-6個月左右,如果單純的入門的話1-2個月左右就差不多了。
㈤ python網路爬蟲
警告你沒有按照他規定的格式BeautifulSoup(html, 'markup_type')
你應該是在代碼中直接用BeautifulSoup(html), 沒有指定用什麼來解析你的html, 他就會用一種最合適的方法來解析, 一般我用lxml, 你也可以自己改成別的
所以把代碼里的BeautifulSoup(html)改成BeautifulSoup(html, 'lxml')即可
㈥ 精通Python網路爬蟲之網路爬蟲學習路線
欲精通Python網路爬蟲,必先了解網路爬蟲學習路線,本篇經驗主要解決這個問題。部分內容參考自書籍《精通Python網路爬蟲》。
作者:韋瑋
轉載請註明出處
隨著大數據時代的到來,人們對數據資源的需求越來越多,而爬蟲是一種很好的自動採集數據的手段。
那麼,如何才能精通Python網路爬蟲呢?學習Python網路爬蟲的路線應該如何進行呢?在此為大傢具體進行介紹。
1、選擇一款合適的編程語言
事實上,Python、PHP、JAVA等常見的語言都可以用於編寫網路爬蟲,你首先需要選擇一款合適的編程語言,這些編程語言各有優勢,可以根據習慣進行選擇。在此筆者推薦使用Python進行爬蟲項目的編寫,其優點是:簡潔、掌握難度低。
2、掌握Python的一些基礎爬蟲模塊
當然,在進行這一步之前,你應當先掌握Python的一些簡單語法基礎,然後才可以使用Python語言進行爬蟲項目的開發。
在掌握了Python的語法基礎之後,你需要重點掌握一個Python的關於爬蟲開發的基礎模塊。這些模塊有很多可以供你選擇,比如urllib、requests等等,只需要精通一個基礎模塊即可,不必要都精通,因為都是大同小異的,在此推薦的是掌握urllib,當然你可以根據你的習慣進行選擇。
3、深入掌握一款合適的表達式
學會了如何爬取網頁內容之後,你還需要學會進行信息的提取。事實上,信息的提取你可以通過表達式進行實現,同樣,有很多表達式可以供你選擇使用,常見的有正則表達式、XPath表達式、BeautifulSoup等,這些表達式你沒有必要都精通,同樣,精通1-2個,其他的掌握即可,在此建議精通掌握正則表達式以及XPath表達式,其他的了解掌握即可。正則表達式可以處理的數據的范圍比較大,簡言之,就是能力比較強,XPath只能處理XML格式的數據,有些形式的數據不能處理,但XPath處理數據會比較快。
4、深入掌握抓包分析技術
事實上,很多網站都會做一些反爬措施,即不想讓你爬到他的數據。最常見的反爬手段就是對數據進行隱藏處理,這個時候,你就無法直接爬取相關的數據了。作為爬蟲方,如果需要在這種情況下獲取數據,那麼你需要對相應的數據進行抓包分析,然後再根據分析結果進行處理。一般推薦掌握的抓包分析工具是Fiddler,當然你也可以用其他的抓包分析工具,沒有特別的要求。
5、精通一款爬蟲框架
事實上,當你學習到這一步的時候,你已經入門了。
這個時候,你可能需要深入掌握一款爬蟲框架,因為採用框架開發爬蟲項目,效率會更加高,並且項目也會更加完善。
同樣,你可以有很多爬蟲框架進行選擇,比如Scrapy、pySpider等等,一樣的,你沒必要每一種框架都精通,只需要精通一種框架即可,其他框架都是大同小異的,當你深入精通一款框架的時候,其他的框架了解一下事實上你便能輕松使用,在此推薦掌握Scrapy框架,當然你可以根據習慣進行選擇。
6、掌握常見的反爬策略與反爬處理策略
反爬,是相對於網站方來說的,對方不想給你爬他站點的數據,所以進行了一些限制,這就是反爬。
反爬處理,是相對於爬蟲方來說的,在對方進行了反爬策略之後,你還想爬相應的數據,就需要有相應的攻克手段,這個時候,就需要進行反爬處理。
事實上,反爬以及反爬處理都有一些基本的套路,萬變不離其宗,這些後面作者會具體提到,感興趣的可以關注。
常見的反爬策略主要有:
IP限制
UA限制
Cookie限制
資源隨機化存儲
動態載入技術
……
對應的反爬處理手段主要有:
IP代理池技術
用戶代理池技術
Cookie保存與處理
自動觸發技術
抓包分析技術+自動觸發技術
……
這些大家在此先有一個基本的思路印象即可,後面都會具體通過實戰案例去介紹。
7、掌握PhantomJS、Selenium等工具的使用
有一些站點,通過常規的爬蟲很難去進行爬取,這個時候,你需要藉助一些工具模塊進行,比如PhantomJS、Selenium等,所以,你還需要掌握PhantomJS、Selenium等工具的常規使用方法。
8、掌握分布式爬蟲技術與數據去重技術
如果你已經學習或者研究到到了這里,那麼恭喜你,相信現在你爬任何網站都已經不是問題了,反爬對你來說也只是一道形同虛設的牆而已了。
但是,如果要爬取的資源非常非常多,靠一個單機爬蟲去跑,仍然無法達到你的目的,因為太慢了。
所以,這個時候,你還應當掌握一種技術,就是分布式爬蟲技術,分布式爬蟲的架構手段有很多,你可以依據真實的伺服器集群進行,也可以依據虛擬化的多台伺服器進行,你可以採用urllib+redis分布式架構手段,也可以採用Scrapy+redis架構手段,都沒關系,關鍵是,你可以將爬蟲任務部署到多台伺服器中就OK。
至於數據去重技術,簡單來說,目的就是要去除重復數據,如果數據量小,直接採用資料庫的數據約束進行實現,如果數據量很大,建議採用布隆過濾器實現數據去重即可,布隆過濾器的實現在Python中也是不難的。
以上是如果你想精通Python網路爬蟲的學習研究路線,按照這些步驟學習下去,可以讓你的爬蟲技術得到非常大的提升。
至於有些朋友問到,使用Windows系統還是Linux系統,其實,沒關系的,一般建議學習的時候使用Windows系統進行就行,比較考慮到大部分朋友對該系統比較數據,但是在實際運行爬蟲任務的時候,把爬蟲部署到Linux系統中運行,這樣效率比較高。由於Python的可移植性非常好,所以你在不同的平台中運行一個爬蟲,代碼基本上不用進行什麼修改,只需要學會部署到Linux中即可。所以,這也是為什麼說使用Windows系統還是Linux系統進行學習都沒多大影響的原因之一。
本篇文章主要是為那些想學習Python網路爬蟲,但是又不知道從何學起,怎麼學下去的朋友而寫的。希望通過本篇文章,可以讓你對Python網路爬蟲的研究路線有一個清晰的了解,這樣,本篇文章的目的就達到了,加油!
本文章由作者韋瑋原創,轉載請註明出處。