導航:首頁 > 編程語言 > python數據科學排名

python數據科學排名

發布時間:2022-09-15 09:23:32

A. python編程語言中是什麼地位為什麼很多大學不教 Python

作者看著網上各種數據分析的知識泛濫, 但是沒有什麼體系,初學者不知道學哪些, 不知道學多少, 不知道學多深, 單純一個python語言, 數據分析會用到那種程度, 不可能說像開發那樣去學, numpy如果不是做演算法工程師用到的知識並不多, pandas知識雜亂無章, 哪些才是最常用的功能等等, 作者不忍眾生皆苦, 決定寫一套python數據分析的全套教程, 目前已完成一部分課件的製作。需要說明的是, 作為一名數據分析師, 你應該先會一點Excel和SQL知識,相關的內容, 網上很多。但是, 即便你一點Excel和SQL都不會也不會影響這部分的學習 !目前作者整理的大綱如下:
第一章 python編程基礎
1.1 python語言概述 1.2 數據科學神器--Anaconda介紹與安裝 1.3 標准輸入輸出 1.4 變數定義與賦值 1.5 數據類型 1.6 流程式控制制語句 1.7 函數
1.8 面向對象編程 第二章 python數據清洗之numpy 2.1 核心ndarray對象的創建 2.2 ndarray對象常用的屬性和方法 2.3 ndarray對象的索引和切片 2.4 ndarray對象的分割與合並 2.5 ndarray對象的廣播(Broadcast) 2.6 numpy中的算術運算函數 2.7 numpy中的統計函數 2.8 numpy中的排序 搜索 計數 去重函數 2.9 numpy中的字元串函數 2.10 numpy中可能會用到的線性代數模塊(後期機器學習會用到一點)
第三章 數據清洗神器pandas
3.1 pandas核心對象之Series對象的創建 常用屬性和方法 3.2 pandas核心對象之DataFrame對象的創建 常用屬性和方法 3.3 DataFrame對象的列操作和行操作 3.4 DataFrame對象的索引和切片 3.5 DataFrame對象的布爾索引 3.6 數據的讀入與導出 3.7 groupby分組運算 3.8 數據合並與數據透視
第四章 數據可視化matplotlib seaborn pyecharts
4.1 包括常用圖形的繪制,略
第五章 實戰案列
5.1 拉勾網數據分析相關職位分析 5.2 boss直聘數據分析相關職位分析 5.3 珍愛網女性用戶數據分析
第六章 機器學習
機器學習部分, 簡單的演算法會講手寫, 難的就用scikit-learn實現, 可能有小夥伴說, 這是調包俠乾的, 小哥哥!小姐姐!哪有那麼多公司, 那麼多人自己干寫演算法的, 有幾個人敢說他寫的演算法比scikit-learn寫得好? 再說了, 你是數據分析師, 這些是你的工具, 解決問題的!不是一天到晚拉格朗日對偶性!先來個機器學習介紹, 然後如下:
6.1 K近鄰演算法 6.2 Kmeans演算法 6.3 決策樹 階段案列:決策樹案列(保險行業) 6.4 線性回歸 嶺回歸 Lasso回歸 6.5 邏輯回歸 6.6 樸素貝葉斯 階段案列:推薦系統(電商玩具) 6.7 隨機森林 6.8 Adaboost 6.9 梯度提升樹GBDT 6.10 極端梯度提升樹Xgboost 6.11 支持向量機SVM 6.12 神經網路 階段案例:Xgboost案例
------------------------------本節內容-----------------------------------------
python語言概述
在說python之前, 我們還是先來看看計算機軟硬體的發展歷史。
1 計算機硬體的發展歷史
第一代計算機-電子管計算機(1946-1957)
無論如何,一項技術的突破必然伴隨著其他行業的突破,簡而言之,電子計算機的出現,前提必須有電子技術的進步,否則一切都是空談!下面是我列舉出計算機硬體的發展過程中, 一些比較重要的事件。
1906年, 美國的Lee De Forest 發明了電子管。在這之前造出數字電子計算機是不可能的。這為電子計算機的發 展奠定了基礎。
1924年2月, 一個具有劃時代意義的公司成立,IBM。
1935年, IBM推出IBM 601機。 這是一台能在一秒鍾算出乘法的穿孔卡片計算機。這台機器無論在自然科學還是在商業意義上都具有重要的地位。大約造了1500台。
1937年, 英國劍橋大學的Alan M. Turing (1912-1954)出版了他的論文 ,並提出了被後人稱之為"圖靈機"的數學模型。
1937年, 美國貝爾試驗室的George Stibitz展示了用繼電器表示二進制的裝置。盡管僅僅是個展示品,但卻是世界上第一台二進制電子計算機。
1941年, Atanasoff和學生Berry完成了能解線性代數方程的計算機,取名叫"ABC"(Atanasoff-Berry Computer),用電容作存儲器,用穿孔卡片作輔助存儲器,那些孔實際上是"燒"上的。 時鍾頻率是60HZ,完成一次加法運算用時一秒。這就是ABC計算機。
1946年, 美國賓夕法尼亞大學,第一台通用電子計算機ENIAC (Electronic Numerical Integrator 和 Computer)誕生, 總工程師埃克特在當時年僅25歲。
這時的計算機的基本線路是採用電子管結構,程序從人工手編的 機器指令程序(0 1),過渡到符號語言(匯編),電子管計算機是計算工具革命性發展的開始,它所採用的進位制與程序存貯等基本技術思想,奠定了現代電子計算機技術基礎。以馮·諾依曼為代表。
第二代計算機——晶體管計算機(時間1957~1964)
電子管時代的計算機盡管已經步入了現代計算機的范疇,但其體積之大、能耗之高、故障之多、價格之貴大大制約了它的普及應用。直到晶體管被發明出來,電子計算機才找到了騰飛的起點,一發而不可收……
20世紀50年代中期,晶體管的出現使計算機生產技術得到了根本性的發展,由晶體管代替電子管作為計算機的基礎器件,用 磁芯或磁鼓作存儲器,在整體性能上,比第一代計算機有了很大的提高。
第三代計算機——中小規模集成電路計算機(時間1964~1971)
20世紀60年代中期, 計算機發展歷程隨著半導體工藝的發展,成功製造了集成電路。中小規模集成電路成為計算機的主要部件,主存儲器也漸漸過渡到 半導體存儲器,使計算機的體積更小,大大降低了計算機計算時的功耗,由於減少了 焊點和 接插件,進一步提高了計算機的可靠性。
第四代計算機——大規模和超大規模集成電路計算機(時間1971~至今)
隨著大規模集成電路的成功製作並用於計算機硬體生產過程,計算機的體積進一步縮小,性能進一步提高。集成更高的大容量半導體存儲器作為內存儲器,發展了並行技術和多機系統,出現了 精簡指令集計算機(RISC),軟體系統工程化、理論化,程序設計自動化。微型計算機在社會上的應用范圍進一步擴大,幾乎所有領域都能看到計算機的「身影」。
第五代計算機——泛指具有人工智慧的計算機(至今~未來)
目前還沒有明確地定義
2 簡述計算機軟體的發展歷史
編程語言的發展
計算機軟體系統的發展,也伴隨著編程語言的發展。計算機程序設計語言的發展,經歷了從機器語言、匯編語言到高級語言的歷程。
機器語言:簡單點說,機器本身也只認識0和1,電路無非就只有通和斷兩種狀態,對應的二進制就是二進制的1和1。
匯編語言:匯編語言只是把一些特殊的二進制用特殊的符號表示,例如,機器要傳送一個數據,假設「傳送」這個指令對應的機器碼是000101,則人們把000101用一個特殊符號,比如mov來表示,當人們要用這個指令時用mov就行,但是mov的本質還是000101,沒有脫離硬體的范圍,有可能這個指令不能在其他機器上用。
高級語言:高級語言完全脫離了硬體范疇,所有的語法更貼近人類的自然語言,人們只需要清楚高級語言的語法,寫出程序就行了,剩下的交給編譯器或者解釋器去編譯或者解釋成機器語言就行了,看,這樣就完全脫離了硬體的范疇,大大提高了程序的開發效率。接下來我們就來看看高級語言的發展,高級語言非常多,我們主要看看比較經典的幾個。
高級語言的發展
B語言與Unix
20世紀60年代,貝爾實驗室的研究員Ken Thompson(肯·湯普森)發明了B語言,並使用B編了個游戲 - Space Travel,他想玩自己這個游戲,所以他背著老闆找到了台空閑的機器 - PDP-7,但是這台機器沒有操作系統,於是Thompson著手為PDP-7開發操作系統,後來這個OS被命名為 - UNIX。
C語言
1971年,Ken Thompson(肯·湯普森)的同事D.M.Ritchie(DM里奇),也很想玩Space Travel,所以加入了Ken Thompson,合作開發UNIX,他的主要工作是改進Thompson的B語言。最終,在1972年這個新語言被稱為C,取BCPL的第二個字母,也是B的下一個字母。
C語言和Unix
1973年,C主體完成。Ken Thompson和D.M.Ritchie迫不及待的開始用C語言完全重寫了UNIX。此時編程的樂趣已經使他們完全忘記了那個「Space Travel」,一門心思的投入到了UNIX和C語言的開發中。自此,C語言和UNIX相輔相成的發展至今。
類C語言起源、歷史
C++(C plus plus Programming Language) - 1983
還是貝爾實驗室的人,Bjarne Stroustrup(本賈尼·斯特勞斯特盧普) 在C語言的基礎上推出了C++,它擴充和完善了C語言,特別是在面向對象編程方面。一定程度上克服了C語言編寫大型程序時的不足。
Python (Python Programming Language)--1991
1989年聖誕節期間,Guido van Rossum 在阿姆斯特丹,Guido van Rossum為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,做為ABC語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是因為他是一個叫Monty Python的喜劇團體的愛好者。第一個Python的版本發布於1991年。
Java(Java Programming Language) - 1995
Sun公司的Patrick Naughton的工作小組研發了Java語言,主要成員是James Gosling(詹姆斯·高斯林)
C(C Sharp Programming Language) - 2000
Microsoft公司的Anders Hejlsberg(安德斯·海爾斯伯格)發明了C,他也是Delphi語言之父。
當然現在還有一些新語言,比如2009年Google的go語言,以及麻省理工的julia等。
3 為什麼是Python
Python有哪些優點
1 語法簡單 漂亮:我們可以說Python是簡約的語言,非常易於讀寫。在遇到問題時,我們可以把更多的注意力放在問題本身上,而不用花費太多精力在程序語言、語法上。
2 豐富而免費的庫:Python社區創造了各種各樣的Python庫。在他們的幫助下,你可以管理文檔,執行單元測試、資料庫、web瀏覽器、電子郵件、密碼學、圖形用戶界面和更多的東西。所有東西包括在標准庫,然而,除了它,還有很多其他的庫。
3 開源:Python是免費開源的。這意味著我們不用花錢,就可以共享、復制和交換它,這也幫助Python形成了豐富的社區資源,使其更加完善,技術發展更快。
4 Python既支持面向過程,也支持面向對象編程。在面向過程編程中,程序員復用代碼,在面向對象編程中,使用基於數據和函數的對象。盡管面向對象的程序語言通常十分復雜,Python卻設法保持簡潔。
5 Python兼容眾多平台,所以開發者不會遇到使用其他語言時常會遇到的困擾。
Python有哪些作用
Python是什麼都能做,但是我們學的是數據分析,我們看看在數據分析領域Python能做什麼。
數據採集:以Scrapy 為代表的各類方式的爬蟲
數據鏈接:Python有大量各類資料庫的第三方包,方便快速的實現增刪改查
數據清洗:Numpy、Pandas,結構化和非結構化的數據清洗及數據規整化的利器
數據分析:Scikit-Learn、Scipy,統計分析,科學計算、建模等
數據可視化:Matplotlib、Seaborn等等大量各類可視化的庫
所以說總結, 為什麼數據科學選的是python, 最重要就是兩個原因:
1 語法簡單漂亮
2 大量豐富免費的第三方庫

B. 數據科學家需要掌握的10個基本統計技術

數據科學家需要掌握的10個基本統計技術
無論您在數據的科學性問題上持哪種看法,都無法忽視數據的持續重要性,也不能輕視分析、組織和情境化數據的能力。 根據大量的就業數據和員工反饋信息統計,在「25個最佳美國就業機會」排行榜中,數據科學家排名第一。毫無疑問,數據科學家所做的具體工作內容將會進一步拓展。隨著機器學習等技術變得越來越普遍,深度學習等新興領域對研究人員和工程師的需求得到了巨大的推動,數據科學家們在創新和技術進步的浪潮中再次嶄露頭角。
編碼能力強大是很重要的,但數據科學並不專職於軟體工程(事實上,對Python很熟悉就足夠了)。數據科學家生活在編碼、統計學和批判性思維的交叉點上。正如喬希·威爾斯(JoshWills)所說的那樣:「數據科學家是一個比任何程序員都要好的統計學家,而且比任何統計學家都更擅長編程。」筆者個人知道有太多的軟體工程師希望轉向數據科學家,並盲目利用機器學習框架TensorFlow或Apache Spark,而不透徹理解背後的統計理論。因此出現了「統計學習」,一個與機器學習有關的理論框架,包含統計到功能分析的一系列專業領域。
為什麼學習統計學習?了解各種技術背後的想法是非常重要的,可以讓你知道如何以及何時使用它們。由簡入繁,首先要理解更簡單的方法,才好把握更復雜的方法。准確地評估一種方法的性能,了解它的工作效果多好或者多糟,這一點很重要。此外,這是一個令人興奮的研究領域,在科學,工業和金融領域有著重要的應用。最終,統計學習是培養現代數據科學家的基本要素。統計學習問題的例子有:
確定前列腺癌的危險因素。
根據記錄周期圖對錄制的音素進行分類。
根據人口統計、飲食和臨床測量,預測是否有人會發生心臟病。
自定義垃圾郵件檢測系統。
識別手寫郵政編碼中的數字。
將組織樣本分為幾個癌症類別之一。
建立人口調查數據中工資與人口變數之間的關系。
統計學習和機器學習之間的差異在於:
機器學習是人工智慧的一個子領域。
統計學習是統計學的一個分支。
機器學習更強調大規模應用和預測的准確性。
統計學習強調模型及其可解釋性,精確性和不確定性。
1 - 線性回歸:
在統計學中,線性回歸是一種通過擬合自變數與自變數之間最佳線性關系來預測目標變數的方法。最好的做法是確保每個點的形狀和實際觀測之間的所有距離之和盡可能小。形狀的適合性是「最好的」,因為在形狀的選擇上沒有其他位置會產生較少的誤差。線性回歸的2種主要類型是簡單線性回歸和多元線性回歸。簡單線性回歸使用一個獨立變數來通過擬合最佳線性關系來預測因變數。多重線性回歸使用多個獨立變數來通過擬合最佳線性關系來預測因變數。
選擇你在日常生活中使用的任何兩件相關的東西。如每月支出,月收入和過去三年每月的旅行次數的數據。就需要回答以下問題:
我明年的每月開支是多少?
哪個因素(每月收入或每月旅行次數)在決定我的每月支出時更重要?
月收入和每月旅行如何與每月支出相關聯?
2 - 分類:
分類是一種數據挖掘技術,它將類別分配給數據集合,以助進行更准確的預測和分析。有時也稱為決策樹,分類是用於對非常大的數據集進行分析的幾種方法之一。眼下有2大分類技術脫穎而出:Logistic回歸和判別分析。
Logistic回歸分析是當因變數是二分(二元)時進行的適當的回歸分析。像所有回歸分析一樣,Logistic回歸是預測分析。 Logistic回歸用於描述數據並解釋一個相關二元變數與一個或多個標稱、序數、區間或比例級別的獨立變數之間的關系。邏輯回歸可以檢查的問題類型:
每增加一磅的超重和每天吸一包香煙,肺癌的可能性(是vs否)會發生怎樣的變化?
體重卡路里攝入量,脂肪攝入量和參與者年齡對心臟病發作是否有影響(有vs無)?
在判別分析中,先驗已知2個或更多個組或群或群,並基於所測量的特徵將1個或更多個新觀察分類到1個已知群中。判別分析在每個響應類別中分別對預測因子X的分布進行建模,然後使用貝葉斯定理將它們翻轉為給定X的值的響應類別概率的估計。這樣的模型可以是線性的或二次的。
線性判別分析為每個觀測值計算「判別分數」,以便對它所處的響應變數類別進行分類。這些分數是通過尋找自變數的線性組合得到的。它假設每個類別內的觀察值都來自多變數高斯分布,預測因子的協方差在響應變數Y的所有k水平上是共同的。
二次判別分析提供了一種替代方法。和LDA一樣,QDA假定每個Y類的觀測值都是從高斯分布中得到的。但是,與LDA不同的是,QDA假定每個類都有其自己的協方差矩陣。換句話說,預測因子不被假定在Y中的每個k水平上具有共同的方差。
3 - 重采樣方法:
重采樣是從原始數據樣本中繪制重復樣本的方法。這是統計推斷的非參數方法。換句話說,重采樣方法不涉及使用通用分布表來計算近似p概率值。
重采樣根據實際數據生成唯一的采樣分布。它使用實驗方法而不是分析方法來生成獨特的抽樣分布。它產生無偏估計,因為它是基於研究者所研究數據的所有可能結果的無偏樣本。為了理解重采樣的概念,您應該理解術語Bootstrapping和交叉驗證:
Bootstrapping是一種技術,可以幫助您在很多情況下驗證預測模型的性能、集成方法、估計模型的偏差和方差。它通過對原始數據進行替換來進行采樣,並將「未選擇」的數據點作為測試用例。我們可以做這幾次,並計算平均分作為我們的模型性能的估計。
另一方面,交叉驗證是驗證模型性能的一種技術,它是通過將訓練數據分成k個部分來完成的。我們以k - 1部分作為訓練集,並使用「伸出部分」作為我們的測試集。我們重復k次不同的方式。最後,我們將k分數的平均值作為我們的業績估計。
通常對於線性模型,普通最小二乘法是考慮將它們適合於數據的主要標准。接下來的3種方法是可以為線性模型的擬合提供更好的預測精度和模型可解釋性的替代方法。
4 - 子集選擇:
這種方法確定了我們認為與響應相關的p預測因子的一個子集。然後,我們使用子集特徵的最小二乘擬合模型。
最佳子集選擇:這里我們對每個可能的p預測因子組合進行單獨的OLS回歸,然後查看最終的模型擬合。演算法分為2個階段:(1)擬合所有包含k預測因子的模型,其中k是模型的最大長度;(2)使用交叉驗證的預測誤差選擇單個模型。使用測試或驗證錯誤非常重要,而不是訓練錯誤來評估模型擬合,因為RSS和R 2單調增加更多的變數。最好的方法是在測試誤差估計值上交叉驗證並選擇具有最高R 2和最低RSS的模型。
向前逐步選擇考慮預測因子的一個小得多的子集。它從不含預測因子的模型開始,然後在模型中添加預測因子,直到所有預測因子都在模型中。被添加變數的順序是變數,其給出對擬合的最大的加法改進,直到沒有更多的變數使用交叉驗證的預測誤差來改進模型擬合。
向後逐步選擇開始將模型中的所有預測因子,然後迭代去除最不有用的預測因子。
混合方法遵循向前逐步回歸方法,但是,在添加每個新變數之後,該方法還可以去除對模型擬合沒有貢獻的變數。
5 - 收縮:
這種方法適合一個涉及所有p預測因子的模型,然而,估計系數相對於最小二乘估計向零收縮。這種縮水,又稱正規化,具有減少方差的作用。取決於執行什麼類型的收縮,其中一些系數可能恰好被估計為零。因此這個方法也執行變數選擇。將系數估計收縮為零的兩個最著名的技術是嶺回歸和Lasso。
嶺回歸類似於最小二乘,通過最小化一個稍微不同的數量估計系數。像OLS一樣,嶺回歸尋求降低RSS的系數估計值,但是當系數接近於零時,它們也會有收縮懲罰。這個懲罰的作用是將系數估計收縮到零。不用進入數學計算,知道嶺回歸縮小列空間方差最小的特徵是有用的。像在主成分分析中一樣,嶺回歸將數據投影到雙向空間,然後比高方差分量收縮低方差分量的系數,這相當於最大和最小主分量。
嶺回歸至少有一個缺點:它包括最終模型中的所有p預測值。犯規條款將使它們中的許多接近於零,但不完全為零。這對於預測准確性來說通常不是問題,但它可能使模型更難以解釋結果。 Lasso克服了這個缺點,並且能夠迫使一些系數歸零,只要s足夠小。由於s = 1導致有規律的OLS回歸,當s接近0時,系數收縮為零。因此,Lasso回歸也執行變數選擇。
6 - 維度降低:
維數減少將估計p + 1個系數的問題簡化為M + 1個系數的簡單問題,其中M
可以將主成分回歸描述為從大量變數中導出低維特徵集合的方法。數據的第一個主要組成方向是觀測值變化最大的。換句話說,第一台PC是盡可能接近數據的一條線。人們可以適應不同的主要組成部分。第二個PC是與第一個PC不相關的變數的線性組合,並且受這個約束的變化最大。這個想法是主要的組成部分使用隨後正交方向的數據的線性組合捕獲數據中最大的變化。通過這種方式,我們也可以結合相關變數的效果,從可用數據中獲取更多信息,而在正則最小二乘中,我們將不得不放棄其中一個相關變數。
我們上面描述的PCR方法包括確定最能代表預測因子的X的線性組合。這些組合(方向)以無監督的方式被識別,因為響應Y不用於幫助確定主要組件方向。也就是說,響應Y不監督主成分的識別,因此不能保證最能解釋預測因子的方向對於預測響應(即使經常假設)也是最好的。偏最小二乘法(PLS)是一個監督的替代PCR。與PCR一樣,PLS是一種降維方法,它首先識別一組新的較小的特徵,這些特徵是原始特徵的線性組合,然後通過最小二乘法擬合一個線性模型到新的M特徵。然而,與PCR不同的是,PLS利用響應變數來識別新的特徵。
7 - 非線性模型:
在統計學中,非線性回歸是回歸分析的一種形式,其中觀測數據是由一個函數建模的,該函數是模型參數的非線性組合,並取決於一個或多個自變數。數據通過逐次逼近的方法進行擬合。以下是一些處理非線性模型的重要技巧:
如果實數的函數可以寫成區間指示函數的有限線性組合,則稱實數為函數。非正式地說,一個階梯函數是一個只有很多片段的分段常量函數。
分段函數是由多個子函數定義的函數,每個子函數應用於主函數域的一定間隔。分段實際上是表達函數的一種方式,而不是函數本身的一個特徵,但是具有額外的限定,可以描述函數的性質。例如,分段多項式函數是在其每個子域上是多項式的函數,但是每個子域上可能是不同的。
樣條函數是由多項式分段定義的特殊函數。在計算機圖形學中,樣條是指分段多項式參數曲線。由於其結構簡單,評估方便和准確,以及通過曲線擬合和互動式曲線設計逼近復雜形狀的能力,樣條曲線是流行的曲線。
廣義加性模型是一種線性預測模型,其中線性預測變數線性依賴於某些預測變數的未知光滑函數,興趣集中在對這些光滑函數的推理上。
8 - 基於樹的方法:
基於樹的方法可以用於回歸和分類問題。這些涉及將預測空間分層或分割成若干簡單區域。由於用於分割預測變數空間的分裂規則集合可以在樹中進行概括,所以這些類型的方法被稱為決策樹方法。下面的方法生成多個樹,然後結合在一起產生一個單一的共識預測。
套袋(Bagging)是減少預測方差的方法,通過使用重復組合來生成原始數據集中的訓練數據,從而生成與原始數據相同的多樣性。通過增加你的訓練集的大小,你不能提高模型的預測力,只是減少方差,勉強把預測調整到預期的結果。
提升(Boosting)是一種使用幾種不同的模型計算產出的方法,然後使用加權平均方法對結果進行平均。通過改變你的加權公式,結合這些方法的優點和缺陷,你可以使用不同的狹義調整模型,為更廣泛的輸入數據提供一個很好的預測力。
隨機森林(random forest )演算法實際上非常類似於套袋。你也可以繪制訓練集的隨機bootstrap樣本。但是,除了自舉樣本之外,還可以繪制隨機子集來訓練單個樹;在套袋中,你給每個樹一套完整功能。由於隨機特徵選擇,與常規套袋相比,樹木之間的相互獨立性更高,這通常會帶來更好的預測性能(由於更好的方差偏差權衡),而且速度更快,因為每棵樹只能從功能的一個子集。
9 - 支持向量機:
SVM是機器學習中監督學習模型中的一種分類技術。通俗地說,它涉及於找到超平面(2D中的線,3D中的平面和更高維中的超平面,更正式地說,超平面是n維空間中的n維空間)最大保證金從本質上講,它是一個約束優化問題,其邊界被最大化,受限於它對數據進行了完美的分類(硬邊緣)。
這種「支持」這個超平面的數據點被稱為「支持向量」。對於兩類數據不能線性分離的情況,這些點被投影到可能線性分離的分解(高維)空間。涉及多個類的問題可以分解為多個一對一或者一對二的分類問題。
10 - 無監督學習:
到目前為止,我們只討論了監督學習技術,其中組是已知的,提供給演算法的經驗是實際實體和它們所屬的組之間的關系。當數據的組(類別)未知時,可以使用另一組技術。它們被稱為無監督的,因為它會留在學習演算法中以找出所提供的數據中的模式。聚類是無監督學習的一個例子,其中不同的數據集被聚類為密切相關的項目組。下面是最廣泛使用的無監督學習演算法的列表:
主成分分析通過識別一組具有最大方差和相互不相關的特徵的線性組合來幫助產生數據集的低維表示。這種線性維度技術有助於理解變數在無監督環境下的潛在相互作用。
k-Means聚類:根據到群集質心的距離將數據分為k個不同的集群。
分層集群:通過創建集群樹來構建集群的多級分層結構。
以上是一些基本的統計技術的簡單解釋與說明,可以幫助數據科學項目經理和主管人員更好地理解他們的數據科學小組背後隱藏的內容。實際上,一些數據科學小組純粹通過python和R庫運行演算法。他們中的大多數甚至不必考慮潛在的數學問題。但是,能夠理解統計分析的基礎知識可以為您的團隊提供更好的方法。

C. Python 最重要的庫都有哪些

第一、NumPy

NumPy是Numerical
Python的簡寫,是Python數值計算的基石。它提供多種數據結構、演算法以及大部分涉及Python數值計算所需的介面。NumPy還包括其他內容:

①快速、高效的多維數組對象ndarray

②基於元素的數組計算或數組間數學操作函數

③用於讀寫硬碟中基於數組的數據集的工具

④線性代數操作、傅里葉變換以及隨機數生成

除了NumPy賦予Python的快速數組處理能力之外,NumPy的另一個主要用途是在演算法和庫之間作為數據傳遞的數據容器。對於數值數據,NumPy數組能夠比Python內建數據結構更為高效地存儲和操作數據。

第二、pandas

pandas提供了高級數據結構和函數,這些數據結構和函數的設計使得利用結構化、表格化數據的工作快速、簡單、有表現力。它出現於2010年,幫助Python成為強大、高效的數據分析環境。常用的pandas對象是DataFrame,它是用於實現表格化、面向列、使用行列標簽的數據結構;以及Series,一種一維標簽數組對象。

pandas將表格和關系型資料庫的靈活數據操作能力與Numpy的高性能數組計算的理念相結合。它提供復雜的索引函數,使得數據的重組、切塊、切片、聚合、子集選擇更為簡單。由於數據操作、預處理、清洗在數據分析中是重要的技能,pandas將是重要主題。

第三、matplotlib

matplotlib是最流行的用於制圖及其他二維數據可視化的Python庫,它由John D.
Hunter創建,目前由一個大型開發者團隊維護。matplotlib被設計為適合出版的制圖工具。

對於Python編程者來說也有其他可視化庫,但matplotlib依然使用最為廣泛,並且與生態系統的其他庫良好整合。

第四、IPython

IPython項目開始於2001年,由Fernando
Pérez發起,旨在開發一個更具交互性的Python解釋器。在過去的16年中,它成為Python數據技術棧中最重要的工具之一。

盡管它本身並不提供任何計算或數據分析工具,它的設計側重於在交互計算和軟體開發兩方面將生產力最大化。它使用了一種執行-探索工作流來替代其他語言中典型的編輯-編譯-運行工作流。它還提供了針對操作系統命令行和文件系統的易用介面。由於數據分析編碼工作包含大量的探索、試驗、試錯和遍歷,IPython可以使你更快速地完成工作。

第五、SciPy

SciPy是科學計算領域針對不同標准問題域的包集合。以下是SciPy中包含的一些包:

①scipy.integrate數值積分常式和微分方程求解器

②scipy.linalg線性代數常式和基於numpy.linalg的矩陣分解

③scipy.optimize函數優化器和求根演算法

④scipy.signal信號處理工具

⑤scipy.sparse稀疏矩陣與稀疏線性系統求解器

SciPy與Numpy一起為很多傳統科學計算應用提供了一個合理、完整、成熟的計算基礎。

第六、scikit-learn

scikit-learn項目誕生於2010年,目前已成為Python編程者首選的機器學習工具包。僅僅七年,scikit-learn就擁有了全世界1500位代碼貢獻者。其中包含以下子模塊:

①分類:SVM、最近鄰、隨機森林、邏輯回歸等

②回歸:Lasso、嶺回歸等

③聚類:K-means、譜聚類等

④降維:PCA、特徵選擇、矩陣分解等

⑤模型選擇:網格搜索、交叉驗證、指標矩陣

⑥預處理:特徵提取、正態化

scikit-learn與pandas、statsmodels、IPython一起使Python成為高效的數據科學編程語言。

D. python語言的用途

一、Web開發
Python誕生時間比Web還早,由於Python是一種解釋型的腳本語言,開發效率很高,所以非常適合用於Web開發,像Django和Flask這樣基於Python的Web框架,最近在Web開發中變得越來越流行。
二、網路爬蟲
許多人喜歡編程的原因,網路爬蟲是Python非常常用的一個場景,帶動了整個Python語言的發展,現在使用Python收集網上的資源比以前容易多了,比如可以再各大網站爬取商品信息、爬取音樂某一類歌曲的所有評論、按條件篩選獲得豆瓣的電影書籍信息並生成表格。
三、人工智慧
是非常火的一個方面,讓Python語言充滿了無限的潛力,並且Python非常適合人工智慧領域,比如numpy、scipy可以做數值計算,sklearn做機器學習,pybrain做神經網路,matplotlib將數據可視化,數據挖掘、機器學習、神經網路、深度學習等方面都是主流的編程語言,得到了廣泛的支持和應用。
四、數據分析
Python有完備的生態環境,大數據分析中涉及到的分布式計算、數據可視化、資料庫操作等,Python都有成熟的模塊可以完成其功能,無論對於數據科學家還是對於數據工程師而言,都是十分便利的。
五、自動化運維
Python能滿足絕大部分自動化運維的需求,既能做後端C/S架構,還能用Web框架快速開發處Web界面,當開發者有能力做出一套運維自動化系統的時候,自身的價值就會大大體現出來。

E. 有了處理excel數據的R語言代碼如何應用

數據科學和機器學習是該時代最需求的技術,這一需求促使每個人都學習不同的庫和軟體包以實現它們。這篇博客文章將重點介紹用於數據科學和機器學習的Python庫。這些是您掌握市場上最被炒作的兩項技能的庫。

以下是此博客中將涉及的主題列表:

數據科學與機器學習導論為什麼要使用Python進行數據科學和機器學習?用於數據科學和機器學習的Python庫用於統計的Python庫用於可視化的Python庫用於機器學習的Python庫深度學習的Python庫用於自然語言處理的Python庫數據科學與機器學習導論

當我開始研究數據科學和機器學習時,總是有這個問題困擾我最大。是什麼導致圍繞這兩個話題的熱門話題?

嗡嗡聲與我們生成的數據量有很大關系。數據是驅動ML模型所需的燃料,並且由於我們處在大數據時代,因此很清楚為什麼將數據科學視為該時代最有希望的工作角色!

我會說數據科學和機器學習是技能,而不僅僅是技術。它們是從數據中獲得有用的見解並通過建立預測模型解決問題所需的技能。

從形式上來講,這就是兩者的定義方式。

數據科學是從數據中提取有用信息以解決實際問題的過程。

機器學習是使機器學習如何通過提供大量數據來解決問題的過程。

這兩個域是高度互連的。

機器學習是數據科學的一部分,它利用ML演算法和其他統計技術來了解數據如何影響和發展業務。

為什麼要使用Python?

Python在用於實現機器學習和數據科學的最流行的編程語言中排名第一。讓我們了解為什麼。

易於學習:Python使用非常簡單的語法,可用於實現簡單的計算,例如將兩個字元串添加到復雜的過程中,例如構建復雜的ML模型。更少的代碼:實施數據科學和機器學習涉及無數的演算法。得益於Python對預定義包的支持,我們不必編寫演算法。為了使事情變得更容易,Python提供了一種「在編碼時檢查」的方法,從而減輕了測試代碼的負擔。預建庫:Python有100多個預建庫,用於實現各種ML和深度學習演算法。因此,每次您要在數據集上運行演算法時,只需要做的就是用單個命令安裝和載入必要的程序包。預先構建的庫的示例包括NumPy,Keras,Tensorflow,Pytorch等。與平台無關:Python可以在多個平台上運行,包括Windows,macOS,Linux,Unix等。在將代碼從一個平台轉移到另一個平台時,您可以使用諸如PyInstaller之類的軟體包,該軟體包將解決所有依賴性問題。大量的社區支持:除擁有大量支持者外,Python還擁有多個社區,團體和論壇,程序員可以在其中發布他們的錯誤並互相幫助。Python庫

Python在AI和ML領域普及的唯一最重要的原因是,Python提供了數千個內置庫,這些庫具有內置功能和方法,可以輕松地進行數據分析,處理,處理,建模等。 。在下一節中,我們將討論以下任務的庫:

統計分析數據可視化數據建模與機器學習深度學習自然語言處理(NLP)統計分析

統計是數據科學和機器學習的最基本基礎之一。所有ML和DL演算法,技術等均基於統計的基本原理和概念。

Python附帶了大量的庫,僅用於統計分析。在此博客中,我們將重點介紹提供內置函數以執行最復雜的統計計算的頂級統計軟體包。

這是用於統計分析的頂級Python庫的列表:

NumPySciPyPandas統計模型NumPy

NumPy或數值Python是最常用的Python庫之一。該庫的主要功能是它支持用於數學和邏輯運算的多維數組。NumPy提供的功能可用於索引,分類,整形和傳輸圖像和聲波,這些圖像和聲波是多維實數數組。

以下是NumPy的功能列表:

執行簡單到復雜的數學和科學計算對多維數組對象的強大支持以及用於處理數組元素的函數和方法的集合傅里葉變換和數據處理常式執行線性代數計算,這對於機器學習演算法(例如線性回歸,邏輯回歸,樸素貝葉斯等)是必需的。SciPy

SciPy庫建立在NumPy之上,是一組子軟體包的集合,可幫助解決與統計分析有關的最基本問題。SciPy庫用於處理使用NumPy庫定義的數組元素,因此它通常用於計算使用NumPy無法完成的數學方程式。

這是SciPy的功能列表:

它與NumPy數組一起使用,提供了一個平台,提供了許多數學方法,例如數值積分和優化。它具有可用於矢量量化,傅立葉變換,積分,插值等子包的集合。提供完整的線性代數函數堆棧,這些函數可用於更高級的計算,例如使用k-means演算法的聚類等。提供對信號處理,數據結構和數值演算法,創建稀疏矩陣等的支持。Pandas

Pandas是另一個重要的統計庫,主要用於統計,金融,經濟學,數據分析等廣泛領域。該庫依賴於NumPy數組來處理Pandas數據對象。NumPy,Pandas和SciPy在執行科學計算,數據處理等方面都嚴重依賴彼此。

我經常被要求在Pandas,NumPy和SciPy中選擇最好的,但是,我更喜歡使用它們,因為它們彼此之間非常依賴。Pandas是處理大量數據的最佳庫之一,而NumPy對多維數組具有出色的支持,另一方面,Scipy提供了一組執行大多數統計分析任務的子包。

以下是Pandas的功能列表:

使用預定義和自定義索引創建快速有效的DataFrame對象。它可用於處理大型數據集並執行子集,數據切片,索引等。提供用於創建Excel圖表和執行復雜數據分析任務的內置功能,例如描述性統計分析,數據整理,轉換,操作,可視化等。提供對處理時間序列數據的支持統計模型

StatsModels Python軟體包建立在NumPy和SciPy之上,是創建統計模型,數據處理和模型評估的最佳選擇。除了使用SciPy庫中的NumPy數組和科學模型外,它還與Pandas集成以進行有效的數據處理。該庫以統計計算,統計測試和數據探索而聞名。

以下是StatsModels的功能列表:

NumPy和SciPy庫中找不到的執行統計檢驗和假設檢驗的最佳庫。提供R樣式公式的實現,以實現更好的統計分析。它更隸屬於統計人員經常使用的R語言。由於它廣泛支持統計計算,因此通常用於實現廣義線性模型(GLM)和普通最小二乘線性回歸(OLM)模型。包括假設檢驗(零理論)在內的統計檢驗是使用StatsModels庫完成的。因此,它們是用於統計分析的最常用和最有效的Python庫。現在讓我們進入數據科學和機器學習中的數據可視化部分。

數據可視化

圖片說出一千多個單詞。我們都聽說過關於藝術方面的引用,但是,對於數據科學和機器學習也是如此。

數據可視化就是通過圖形表示有效地表達來自數據的關鍵見解。它包括圖形,圖表,思維導圖,熱圖,直方圖,密度圖等的實現,以研究各種數據變數之間的相關性。

在本博客中,我們將重點介紹最好的Python數據可視化軟體包,這些軟體包提供內置函數來研究各種數據功能之間的依賴關系。

這是用於數據可視化的頂級Python庫的列表:

Matplotlib是Python中最基本的數據可視化軟體包。它支持各種圖形,例如直方圖,條形圖,功率譜,誤差圖等。它是一個二維圖形庫,可生成清晰明了的圖形,這對於探索性數據分析(EDA)至關重要。

這是Matplotlib的功能列表:

Matplotlib通過提供選擇合適的線條樣式,字體樣式,格式化軸等功能,使繪制圖形變得極為容易。創建的圖形可幫助您清楚地了解趨勢,模式並進行關聯。它們通常是推理定量信息的工具。它包含Pyplot模塊,該模塊提供了與MATLAB用戶界面非常相似的界面。這是Matplotlib軟體包的最佳功能之一。提供面向對象的API模塊,以使用GUI工具(例如Tkinter,wxPython,Qt等)將圖形集成到應用程序中。Matplotlib

Matplotlib庫構成了Seaborn庫的基礎。與Matplotlib相比,Seaborn可用於創建更具吸引力和描述性的統計圖。除了對數據可視化的廣泛支持外,Seaborn還附帶一個面向數據集的內置API,用於研究多個變數之間的關系。

以下是Seaborn的功能列表:

提供用於分析和可視化單變數和雙變數數據點以及將數據與其他數據子集進行比較的選項。支持針對各種目標變數的線性回歸模型的自動統計估計和圖形表示。通過提供執行高級抽象的功能,構建用於構造多圖網格的復雜可視化。帶有許多內置主題,可用於樣式設置和創建matplotlib圖Ploty

Ploty是最知名的圖形Python庫之一。它提供了互動式圖形,以了解目標變數和預測變數之間的依賴性。它可以用於分析和可視化統計,財務,商業和科學數據,以生成清晰明了的圖形,子圖,熱圖,3D圖表等。

這是使Ploty成為最佳可視化庫之一的功能列表:

它具有30多種圖表類型,包括3D圖表,科學和統計圖,SVG地圖等,以實現清晰的可視化。藉助Ploty的Python API,您可以創建由圖表,圖形,文本和Web圖像組成的公共/私有儀錶板。使用Ploty創建的可視化以JSON格式序列化,因此您可以在R,MATLAB,Julia等不同平台上輕松訪問它們。它帶有一個稱為Plotly Grid的內置API,該API可讓您直接將數據導入Ploty環境。Bokeh

Bokeh是Python中交互性最強的庫之一,可用於為Web瀏覽器構建描述性的圖形表示形式。它可以輕松處理龐大的數據集並構建通用圖,從而有助於執行廣泛的EDA。Bokeh提供定義最完善的功能,以構建互動式繪圖,儀錶板和數據應用程序。

這是Bokeh的功能列表:

使用簡單的命令幫助您快速創建復雜的統計圖支持HTML,筆記本和伺服器形式的輸出。它還支持多種語言綁定,包括R,Python,lua,Julia等。Flask和django也與Bokeh集成在一起,因此您也可以在這些應用程序上表達可視化效果它提供了對轉換為其他庫(如matplotlib,seaborn,ggplot等)中編寫的可視化文件的支持因此,這些是用於數據可視化的最有用的Python庫。現在,讓我們討論用於實現整個機器學習過程的頂級Python庫。

機器學習

創建可以准確預測結果或解決特定問題的機器學習模型是任何數據科學項目中最重要的部分。

實施ML,DL等涉及對數千行代碼進行編碼,當您要創建通過神經網路解決復雜問題的模型時,這可能變得更加麻煩。但值得慶幸的是,我們無需編寫任何演算法,因為Python隨附了多個軟體包,僅用於實現機器學習技術和演算法。

在此博客中,我們將重點介紹提供內置函數以實現所有ML演算法的頂級ML軟體包。

以下是用於機器學習的頂級Python庫的列表:

Scikit-learnXGBoostElI5Scikit-learn

Scikit-learn是最有用的Python庫之一,是用於數據建模和模型評估的最佳庫。它附帶了無數功能,其唯一目的是創建模型。它包含所有有監督的和無監督的機器學習演算法,並且還具有用於集合學習和促進機器學習的定義明確的功能。

以下是Scikit學習的功能列表:

提供一組標准數據集,以幫助您開始使用機器學習。例如,著名的Iris數據集和Boston House Price數據集是Scikit-learn庫的一部分。用於執行有監督和無監督機器學習的內置方法。這包括解決,聚類,分類,回歸和異常檢測問題。帶有用於特徵提取和特徵選擇的內置功能,可幫助識別數據中的重要屬性。它提供了執行交叉驗證以評估模型性能的方法,還提供了用於優化模型性能的參數調整功能。XGBoost

XGBoost代表「極端梯度增強」,它是執行Boosting Machine Learning的最佳Python軟體包之一。諸如LightGBM和CatBoost之類的庫也同樣配備了定義明確的功能和方法。建立該庫的主要目的是實現梯度提升機,該梯度提升機用於提高機器學習模型的性能和准確性。

以下是其一些主要功能:

該庫最初是用C ++編寫的,被認為是提高機器學習模型性能的最快,有效的庫之一。核心的XGBoost演算法是可並行化的,並且可以有效地利用多核計算機的功能。這也使該庫足夠強大,可以處理大量數據集並跨數據集網路工作。提供用於執行交叉驗證,參數調整,正則化,處理缺失值的內部參數,還提供scikit-learn兼容的API。該庫經常在頂級的數據科學和機器學習競賽中使用,因為它一直被證明優於其他演算法。ElI5

ELI5是另一個Python庫,主要致力於改善機器學習模型的性能。該庫相對較新,通常與XGBoost,LightGBM,CatBoost等一起使用,以提高機器學習模型的准確性。

以下是其一些主要功能:

提供與Scikit-learn軟體包的集成,以表達功能重要性並解釋決策樹和基於樹的集成的預測。它分析並解釋了XGBClassifier,XGBRegressor,LGBMClassifier,LGBMRegressor,CatBoostClassifier,CatBoostRegressor和catboost所做的預測。它提供了對實現多種演算法的支持,以便檢查黑盒模型,其中包括TextExplainer模塊,該模塊可讓您解釋由文本分類器做出的預測。它有助於分析包括線性回歸器和分類器在內的scikit學習通用線性模型(GLM)的權重和預測。深度學習

機器學習和人工智慧的最大進步是通過深度學習。隨著深度學習的介紹,現在可以構建復雜的模型並處理龐大的數據集。幸運的是,Python提供了最好的深度學習軟體包,可幫助構建有效的神經網路。

在此博客中,我們將專注於提供用於實現復雜的神經網路的內置功能的頂級深度學習軟體包。

以下是用於深度學習的頂級Python庫的列表:

TensorFlow是用於深度學習的最佳Python庫之一,是一個用於跨各種任務進行數據流編程的開源庫。它是一個符號數學庫,用於構建強大而精確的神經網路。它提供了直觀的多平台編程界面,可在廣闊的領域中實現高度擴展。

以下是TensorFlow的一些關鍵功能:

它允許您構建和訓練多個神經網路,以幫助適應大型項目和數據集。除支持神經網路外,它還提供執行統計分析的功能和方法。例如,它帶有用於創建概率模型和貝葉斯網路(例如伯努利,Chi2,Uniform,Gamma等)的內置功能。該庫提供了分層的組件,這些組件可以對權重和偏差執行分層的操作,並且還可以通過實施正則化技術(例如批標准化,丟包等)來提高模型的性能。它帶有一個稱為TensorBoard的可視化程序,該可視化程序創建互動式圖形和可視化圖形以了解數據功能的依賴性。Pytorch

Pytorch是一個基於Python的開源科學計算軟體包,用於在大型數據集上實施深度學習技術和神經網路。Facebook積極地使用此庫來開發神經網路,以幫助完成各種任務,例如面部識別和自動標記。

以下是Pytorch的一些主要功能:

提供易於使用的API與其他數據科學和機器學習框架集成。與NumPy一樣,Pytorch提供了稱為Tensors的多維數組,與NumPy不同,它甚至可以在GPU上使用。它不僅可以用於對大型神經網路進行建模,而且還提供了一個界面,具有200多種用於統計分析的數學運算。創建動態計算圖,以在代碼執行的每個點建立動態圖。這些圖有助於時間序列分析,同時實時預測銷售量。Keras

Keras被認為是Python中最好的深度學習庫之一。它為構建,分析,評估和改進神經網路提供全面支持。Keras基於Theano和TensorFlow Python庫構建,該庫提供了用於構建復雜的大規模深度學習模型的附加功能。

以下是Keras的一些關鍵功能:

為構建所有類型的神經網路提供支持,即完全連接,卷積,池化,循環,嵌入等。對於大型數據集和問題,可以將這些模型進一步組合以創建完整的神經網路它具有執行神經網路計算的內置功能,例如定義層,目標,激活功能,優化器和大量工具,使處理圖像和文本數據更加容易。它帶有一些預處理的數據集和經過訓練的模型,包括MNIST,VGG,Inception,SqueezeNet,ResNet等。它易於擴展,並支持添加包括功能和方法的新模塊。自然語言處理

您是否曾經想過Google如何恰當地預測您要搜索的內容?Alexa,Siri和其他聊天機器人背後的技術是自然語言處理。NLP在設計基於AI的系統中發揮了巨大作用,該系統有助於描述人類語言與計算機之間的交互。

在此博客中,我們將重點介紹提供內置功能以實現基於高級AI的系統的頂級自然語言處理包。

這是用於自然語言處理的頂級Python庫的列表:

NLTKspaCyGensimNLTK(自然語言工具包)

NLTK被認為是分析人類語言和行為的最佳Python軟體包。NLTK庫是大多數數據科學家的首選,它提供易於使用的界面,其中包含50多種語料庫和詞彙資源,有助於描述人與人之間的互動以及構建基於AI的系統(例如推薦引擎)。

這是NLTK庫的一些關鍵功能:

提供一套數據和文本處理方法,用於文本分析的分類,標記化,詞干,標記,解析和語義推理。包含用於工業級NLP庫的包裝器,以構建復雜的系統,以幫助進行文本分類並查找人類語音的行為趨勢和模式它帶有描述計算語言學實現的綜合指南和完整的API文檔指南,可幫助所有新手開始使用NLP。它擁有龐大的用戶和專業人員社區,它們提供全面的教程和快速指南,以學習如何使用Python進行計算語言學。spaCy

spaCy是一個免費的開源Python庫,用於實現高級自然語言處理(NLP)技術。當您處理大量文本時,重要的是要了解文本的形態學意義以及如何將其分類以理解人類語言。通過spaCY可以輕松實現這些任務。

這是spaCY庫的一些關鍵功能:

除了語言計算外,spaCy還提供了單獨的模塊來構建,訓練和測試統計模型,從而更好地幫助您理解單詞的含義。帶有各種內置的語言注釋,可幫助您分析句子的語法結構。這不僅有助於理解測試,還有助於查找句子中不同單詞之間的關系。它可用於對包含縮寫和多個標點符號的復雜嵌套令牌應用令牌化。除了非常強大和快速之外,spaCy還提供對51種以上語言的支持。Gensim

Gensim是另一個開源Python軟體包,其建模旨在從大型文檔和文本中提取語義主題,以通過統計模型和語言計算來處理,分析和預測人類行為。無論數據是原始數據還是非結構化數據,它都有能力處理龐大的數據。

以下是Genism的一些主要功能:

它可用於構建可通過理解每個單詞的統計語義來有效分類文檔的模型。它帶有諸如Word2Vec,FastText,潛在語義分析之類的文本處理演算法,這些演算法研究文檔中的統計共現模式,以過濾掉不必要的單詞並構建僅具有重要功能的模型。提供可以導入並支持各種數據格式的I / O包裝器和讀取器。它具有簡單直觀的界面,可供初學者輕松使用。API學習曲線也很低,這解釋了為什麼許多開發人員喜歡此庫。

F. R vs Python,誰才是數據科學的最佳語言

可以去這里看:
http://blog.csdn.net/pinellina/article/details/50781531

從定位角度看,R致力於提供更好的,對用戶友好的數據分析、統計分析和繪圖模型;而Python則強調生產效率和代碼的可讀性。

雙方的用戶群也有一定的差異。R主要用於學術和研究領域,如今正在快速拓展其企業市場的運用。Python的使用者,是那些想深入鑽研數據分析或者應用統計技術的程序員,以及向數據科學尋求幫護的開發者。用一句話總結:「越接近統計研究跟數據分析人,越傾向R;越接近工程開發工程環境的人,越傾向Python」。

R和Python都得到大量的社區支持,包括郵件列表(Mailing Lists)、用戶貢獻的文檔、以及Stackoverflow網站。此外,R還可以從研究人員、數據科學家、統計學家和數量分析專家那裡得到更多的支持;而Python則從開發者和程序員那裡得到的支持。

在靈活性方面,在R中使用復雜的公式很容易。各種各樣的統計檢驗和統計模型都是現成的並且容易使用;相比R,Python在完成以前沒有做過的新奇的事情上,很靈活,開發人員也會用它寫網站或其它應用的腳本。

關於易學習性,開始學習R時有一個陡峭的學習曲線,一旦了解了最基本知識,就能很容易地學習更高級的知識。因此,對於有經驗的程序員,R並不難。建議R的學習者查看DataCamp上的練習和教程。
由於Python看重可讀性和易用性,使得它的學習曲線相對比較低並且平緩。因此,對於初級程序員,Python 被認為是一個很好的編程語言。對於Python學習者的建議是,嘗試用《笨辦法學Python》學習的同時看視頻做練習。

兩者都有自己的代碼庫。CRAN(The Comprehensive R Archive Network)是一個很大的R包庫,用戶很容易為其貢獻代碼。R包是一個包含R函數、數據和編譯代碼的集合,R包在R中用一行代碼即可安裝。PyPi(Python Package Index)是Python軟體庫,用戶可以為PyPi貢獻代碼,但實踐起來有點困難。
計算機科學教授Norm Matloff 曾說過,「Python並未建立起一個能與CRAN媲美的巨大的代碼庫,R在這方面領先巨大。但是,統計學並不是Python的中心任務。」

按任務類型劃分,做探索性研究時,R語言很適合初學者。幾行代碼便可寫出統計模型;而作為一個完整成熟的程序語言,Python是為產品使用進行演算法執行的一個工具。
數據處理能力上,使用R進行數據分析很容易上手,因為它具有龐大數量的包、方便使用的檢驗以及在使用公式方面的優勢。做基本數據分析時,R語言更方便,不需要額外安裝包,大的資料庫需要使用類似data.table和dplyr包。過去,Python數據分析包的幼年期曾是個問題,但是現在已經得到很大的改善,用Python進行數據分析時,你需要使用NumPy、Pandas和其它的程序包。

如何上手也是比拼的一個方面。R的集成開發環境(IDE)可以選擇RStudio。R最受歡迎的程序包有:dply、plyr和data.table(易於操作數據),stringr(易於操作字元串),zoo(處理規則和不規則時間序列),ggvis、lattice和ggplot2(數據可視化),caret(機器學習),建議初學者查看DataCamp上的課程和教程。
Python的集成開發環境(IDE)有很多,其中Spyder和Python Notebook最受歡迎。建議初學者查看Rodeo(被稱為「Python到數據科學IDE」)。Python最受歡迎的程序包有:pandas (易於操作數據),SciPy/NumPy(科學計算),sckikit-learn(機器學習),matplotlib(用於作圖),statsmodels(數據探索、統計模型估計、統計檢驗和單元測試)。

G. Python的就業前景怎麼樣

Python未來的前景怎麼樣?就業崗位多不多?薪資高不高?今天就來看一下詳細分析。

1、為什麼這么多人學Python呢?

很多初學者都聽說python很火,可是為啥要學Python,下面談談我的感悟。

Python語言是我目前為止用的最爽的語言,因為它真的很優美。雖然C、C++、Java也非常的強大和偉大,但是每一種語言偉大的背後都是有一定的時代背景。

Python被廣泛的用在Web開發、運維自動化、測試自動化、數據挖掘等多個行業和領域。

一項專業調查顯示,75%的受訪者將Python視為主要開發語言,反之,其他25%受訪者則將其視為輔助開發語言。

將Python作為主要開發語言的開發者數量逐年遞增,這表明Python正在成為越來越多開發者的開發語言選擇。

那麼未來10年到底哪種語言會獨領風騷,笑傲江湖,我不得而知,但是未來10年一定是人工智慧,萬物互聯的時代,現在AI、VR、無人駕駛汽車、無人機、智能家居離我們越來越近了。

未來10年將是大數據,人工智慧爆發的時代,到時將會有大量的數據需要處理,而Python最大的優勢,就是對數據的處理,有著得天獨厚的優勢,我相信未來的10年,Python會越來越火。

2、Python崗位需求量10萬

從職友集最新Python招聘崗位需求來看,Python工程師的崗位需求量巨大,並且崗位需求量還在呈現上漲的趨勢。

全國Python崗位需求量接近10萬;

北京崗位需求量居首位為20890個佔比21.17%,

上海Python工程師崗位需求量居第二位為12843個佔比13.02%,

其次是深圳、杭州、廣州等一線城市合計佔比16.53%。

從下圖可知,Python 相關職位的需求量,依然集中在三大經濟圈,特別是在北京、上海、深圳這幾個城市。

以上為Python各方向薪資

因為Python在大數據和人工智慧領域的爆發性發展, 導致Python方向崗位的薪水在水漲船高,從數據分析來看,月薪在20K-50K不等。

學習Python的程序員,除了能從事Python開發工程師、人工智慧工程師、數據分析師、Python自動化測試外,也能夠朝著Python游戲開發工程師、SEO工程師、Linux運維工程師等方向發展,發展方向較為多元化。

說這么多之後,你會發現,Python的發展前景十分廣闊。並且Python是一門真正意義上的全棧語言,即使目前世界上使用最廣泛的Java語言,在很多方面與Python相比也遜色很多!

H. Python五大應用領域是什麼

【導讀】伴隨著國家戰略對「新基建」施行提上日程,大數據將會得到進一步推行和運用。那麼,作為大數據開發言語之一的Python言語,在哪些領域有重要運用呢?今天就跟隨小編一起來了解下吧!

一、網路爬蟲

網路爬蟲是Python比較常用的一個場景,國際上,google在前期大量地運用Python言語作為網路爬蟲的根底,帶動了整個Python言語的運用發展。

二、數據處理

Python有很齊備的生態環境。"大數據"分析中涉及到的分布式核算、數據可視化、資料庫操作等,Python中都有成熟的模塊能夠挑選完結其功能。關於Hadoop-MapRece和Spark,都能夠直接運用Python完結核算邏輯,這不管關於數據科學家仍是關於數據工程師而言都是十分便當的。

三、web開發

Python的誕生前史比Web還要早,由於Python是一種解說型的腳本言語,開發效率高,所以十分適合用來做Web開發。

Django 是 Python 編程言語驅動的一個開源模型-視圖-控制器(MVC)風格的 Web 運用程序結構。運用
Django,咱們在幾分鍾之內就能夠創建高品質、易維護、資料庫驅動的運用程序。

四、數據分析

關於數據分析師來說,不只要自己理解數據背面的含義,而且還要給更直地展現數據的含義。

Scipy是一組專門解決科學核算中各種規范問題域的包的集合。Numpy是python科學核算的根底包。Pandas處理上千萬的數據是一揮而就的工作,同時隨後咱們也將看到它比SQL有更強的表達能力,能夠做很多復雜的操作,要寫的code也更少。

五、人工智慧

人工智慧是現在十分火的一個方向,AI熱潮讓Python言語的未來充滿了無限的潛力。現在釋放出來的幾個十分有影響力的AI結構,大多是Python的實現,為什麼呢?

在人工智慧大領域領域內的數據發掘、機器學習、神經網路、深度學習等方面都是主流的編程言語,得到廣泛的支持和運用。人工智慧的核心演算法大部分仍是依賴於C/C++的,由於是核算密集型,需求十分精細的優化,還需求GPU、專用硬體之類的介面,這些都只要C/C++能做到。

關於Python五大應用領域是什麼,小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。

閱讀全文

與python數據科學排名相關的資料

熱點內容
壓縮因子定義 瀏覽:966
cd命令進不了c盤怎麼辦 瀏覽:212
葯業公司招程序員嗎 瀏覽:972
毛選pdf 瀏覽:659
linuxexecl函數 瀏覽:727
程序員異地戀結果 瀏覽:374
剖切的命令 瀏覽:228
干什麼可以賺錢開我的世界伺服器 瀏覽:290
php備案號 瀏覽:990
php視頻水印 瀏覽:167
怎麼追程序員的女生 瀏覽:487
空調外壓縮機電容 瀏覽:79
怎麼將安卓變成win 瀏覽:459
手機文件管理在哪兒新建文件夾 瀏覽:724
加密ts視頻怎麼合並 瀏覽:775
php如何寫app介面 瀏覽:804
宇宙的琴弦pdf 瀏覽:396
js項目提成計算器程序員 瀏覽:944
pdf光子 瀏覽:834
自拍軟體文件夾名稱大全 瀏覽:328