『壹』 python 數據可視化:分類特徵統計圖
上一課已經體驗到了 Seaborn 相對 Matplotlib 的優勢,本課將要介紹的是 Seaborn 對分類數據的統計,也是它的長項。
針對分類數據的統計圖,可以使用 sns.catplot 繪制,其完整參數如下:
本課使用演繹的方式來學習,首先理解這個函數的基本使用方法,重點是常用參數的含義。
其他的參數,根據名稱也能基本理解。
下面就依據 kind 參數的不同取值,分門別類地介紹各種不同類型的分類統計圖。
讀入數據集:
然後用這個數據集制圖,看看效果:
輸出結果:
毫無疑問,這里繪制的是散點圖。但是,該散點圖的橫坐標是分類特徵 time 中的三個值,並且用 hue='kind' 又將分類特徵插入到圖像中,即用不同顏色的的點代表又一個分類特徵 kind 的值,最終得到這些類別組合下每個記錄中的 pulse 特徵值,並以上述圖示表示出來。也可以理解為,x='time', hue='kind' 引入了圖中的兩個特徵維度。
語句 ① 中,就沒有特別聲明參數 kind 的值,此時是使用默認值 'strip'。
與 ① 等效的還有另外一個對應函數 sns.stripplot。
輸出結果:
② 與 ① 的效果一樣。
不過,在 sns.catplot 中的兩個參數 row、col,在類似 sns.stripplot 這樣的專有函數中是沒有的。因此,下面的圖,只有用 sns.catplot 才能簡潔直觀。
輸出結果:
不過,如果換一個叫角度來說,類似 sns.stripplot 這樣的專有函數,表達簡單,參數與 sns.catplot 相比,有所精簡,使用起來更方便。
仔細比較,sns.catplot 和 sns.stripplot 兩者還是稍有區別的,雖然在一般情況下兩者是通用的。
因此,不要追求某一個是萬能的,各有各的用途,存在即合理。
不過,下面的聲明請注意: 如果沒有非常的必要,比如繪制分區圖,在本課中後續都演示如何使用專有名稱的函數。
前面已經初步解釋了這個函數,為了格式完整,這里再重復一下,即 sns.catplot 中參數 kind='strip'。
如果非要將此函數翻譯為漢語,可以稱之為「條狀散點圖」。以分類特徵為一坐標軸,在另外一個坐標軸上,根據分類特徵,將該分類特徵數據所在記錄中的連續值沿坐標軸描點。
從語句 ② 的結果圖中可以看到,這些點雖然縱軸的數值有相同的,但是沒有將它們重疊。因此,我們看到的好像是「一束」散點,實際上,所有點的橫坐標都應該是相應特徵分類數據,也不要把分類特徵的值理解為一個范圍,分散開僅僅是為了圖示的視覺需要。
輸出結果:
④ 相對 ② 的圖示,在於此時同一縱軸值的都重合了——本來它們的橫軸值都是一樣的。實現此效果的參數是 jitter=0,它可以表示點的「振動」,如果默認或者 jitter=True,意味著允許描點在某個范圍振動——語句 ② 的效果;還可設置為某個 0 到 1 的浮點,表示許可振動的幅度。請對比下面的操作。
輸出結果:
語句 ② 中使用 hue='kind' 參數向圖中提供了另外一個分類特徵,但是,如果感覺圖有點亂,還可以這樣做:
輸出結果:
dodge=True 的作用就在於將 hue='kind' 所引入的特徵數據分開,相對 ② 的效果有很大差異。
並且,在 ⑤ 中還使用了 paletter='Set2' 設置了色彩方案。
sns.stripplot 函數中的其他有關參數,請讀者使用幫助文檔了解。
此函數即 sns.catplot 的參數 kind='swarm'。
輸出結果:
再繪制一張簡單的圖,一遍研究這種圖示的本質。
輸出結果:
此圖只使用了一個特徵的數據,簡化表象,才能探究 sns.swarmplot 的本質。它同樣是將該特徵中的數據,依據其他特徵的連續值在圖中描點,並且所有點在默認情況下不彼此重疊——這方面與 sns.stripplot 一樣。但是,與之不同的是,這些點不是隨機分布的,它們經過調整之後,均勻對稱分布在分類特徵數值所在直線的兩側,這樣能很好地表示數據的分布特點。但是,這種方式不適合「大數據」。
sns.swarmplot 的參數似乎也沒有什麼太特殊的。下面使用幾個,熟悉一番基本操作。
在分類維度上還可以再引入一個維度,用不同顏色的點表示另外一種類別,即使用 hue 參數來實現。
輸出結果:
這里用 hue = 'smoker' 參數又引入了一個分類特徵,在圖中用不同顏色來區分。
如果覺得會 smoker 特徵的值都混在一起有點亂,還可以使用下面方式把他們分開——老調重彈。
輸出結果:
生成此效果的參數就是 dodge=True,它的作用就是當 hue 參數設置了特徵之後,將 hue 的特徵數據進行分類。
sns.catplot 函數的參數 kind 可以有三個值,都是用於繪制分類的分布圖:
下面依次對這三個專有函數進行闡述。
『貳』 python數據畫圖
可以用seaborn庫畫這種帶注釋的熱圖,就幾行代碼,看官方的示例文檔就能上手。
『叄』 python怎麼根據數據生成圖像
網上有很多的字元畫,看起來很炫酷,下面就告訴你如何用Python做這么炫酷的事,
說下思路吧:
原圖->灰度->根據像素亮度-映射到指定的字元序列中->輸出。
字元越多,字元變化稠密。效果會更好。
如果根據灰度圖的像素亮度范圍製作字元畫,效果會更好。
如果再使用調色板,對字元進行改色,就更像原圖了。
這是原圖:
這是生成的字元畫:
廢話不多說,直接上代碼:
復制代碼 代碼如下:
import Image
chars =" ...',;:clodxkLO0DGEKNWMM"
fn=r'c:\users\liabc\desktop\jianbing.png'
f1=lambda
F:''.join([(k%100!=0) and m or m+'\n' for k,m in enumerate(apply(lambda
x:[chars[x[j,i]%len(chars)] for i in xrange(70) for j in
xrange(100)],(Image.open(F).resize((100,70)).convert("L").load(),)),1)])
f=open(r"c:\users\liabc\desktop\aface.txt","w")
f.write(f1(fn))
f.close()
『肆』 Python實操:手把手教你用Matplotlib把數據畫出來
作者:邁克爾·貝耶勒(Michael Beyeler)
如需轉載請聯系華章 科技
如果已安裝Anaconda Python版本,就已經安裝好了可以使用的 Matplotlib。否則,可能要訪問官網並從中獲取安裝說明:
http://matplotlib.org
正如使用np作為 NumPy 的縮寫,我們將使用一些標準的縮寫來表示 Matplotlib 的引入:
在本書中,plt介面會被頻繁使用。
讓我們創建第一個繪圖。
假設想要畫出正弦函數sin(x)的線性圖。得到函數在x坐標軸上0≤x<10內所有點的值。我們將使用 NumPy 中的 linspace 函數來在x坐標軸上創建一個從0到10的線性空間,以及100個采樣點:
可以使用 NumPy 中的sin函數得到所有x點的值,並通過調用plt中的plot函數把結果畫出來:
你親自嘗試了嗎?發生了什麼嗎?有沒有什麼東西出現?
實際情況是,取決於你在哪裡運行腳本,可能無法看到任何東西。有下面幾種可能性:
1. 從.py腳本中繪圖
如果從一個腳本中運行 Matplotlib,需要加上下面的這行調用:
在腳本末尾調用這個函數,你的繪圖就會出現!
2. 從 IPython shell 中繪圖
這實際上是互動式地執行Matplotlib最方便的方式。為了讓繪圖出現,需要在啟動 IPython 後使用所謂的%matplotlib魔法命令。
接下來,無須每次調用plt.show()函數,所有的繪圖將會自動出現。
3. 從 Jupyter Notebook 中繪圖
如果你是從基於瀏覽器的 Jupyter Notebook 中看這段代碼,需要使用同樣的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入圖形,這會有兩種輸出選項:
在本書中,將會使用inline選項:
現在再次嘗試一下:
上面的命令會得到下面的繪圖輸出結果:
如果想要把繪圖保存下來留作以後使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
僅需要確保你使用了支持的文件後綴,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作為本章最後一個測試,讓我們對外部數據集進行可視化,比如scikit-learn中的數字數據集。
為此,需要三個可視化工具:
那麼開始引入這些包吧:
第一步是載入實際數據:
如果沒記錯的話,digits應該有兩個不同的數據域:data域包含了真正的圖像數據,target域包含了圖像的標簽。相對於相信我們的記憶,我們還是應該對digits稍加 探索 。輸入它的名字,添加一個點號,然後按Tab鍵:digits.<TAB>,這個操作將向我們展示digits也包含了一些其他的域,比如一個名為images的域。images和data這兩個域,似乎簡單從形狀上就可以區分。
兩種情況中,第一維對應的都是數據集中的圖像數量。然而,data中所有像素都在一個大的向量中排列,而images保留了各個圖像8×8的空間排列。
因此,如果想要繪制出一副單獨的圖像,使用images將更加合適。首先,使用NumPy的數組切片從數據集中獲取一幅圖像:
這里是從1797個元素的數組中獲取了它的第一行數據,這行數據對應的是8×8=64個像素。下面就可以使用plt中的imshow函數來繪制這幅圖像:
上面的命令得到下面的輸出:
此外,這里也使用cmap參數指定了一個顏色映射。默認情況下,Matplotlib 使用MATLAB默認的顏色映射jet。然而,在灰度圖像的情況下,gray顏色映射更有效。
最後,可以使用plt的subplot函數繪制全部數字的樣例。subplot函數與MATLAB中的函數一樣,需要指定行數、列數以及當前的子繪圖索引(從1開始計算)。我們將使用for 循環在數據集中迭代出前十張圖像,每張圖像都分配到一個單獨的子繪圖中。
這會得到下面的輸出結果:
關於作者:Michael Beyeler,華盛頓大學神經工程和數據科學專業的博士後,主攻仿生視覺計算模型,用以為盲人植入人工視網膜(仿生眼睛),改善盲人的視覺體驗。 他的工作屬於神經科學、計算機工程、計算機視覺和機器學習的交叉領域。同時他也是多個開源項目的積極貢獻者。
本文摘編自《機器學習:使用OpenCV和Python進行智能圖像處理》,經出版方授權發布。
『伍』 python怎麼用列表中的數據畫圖
可以在matplotlib的文檔中找到各種圖表類型,由於根據特定布局創建Figure和subplot是一件常見的任務,於是便出現一個更為方便的方法:
plt.subplots,它可以創建一個新的Figure,且返回一個含有已創建的subplot對象的numpy數組。
『陸』 如何用python繪制簡單條形圖
如何用python繪制簡單條形圖呢?這里離不開matplotlib的使用。
條形圖是數據可視化圖形中很基礎也很常用的一種圖,簡單解釋下:條形圖也叫長條圖(英語:bar chart),亦稱條圖(英語:bar graph)、條狀圖、棒形圖、柱狀圖、條形圖表,是一種以長方形的長度為變數的統計圖表。長條圖用來比較兩個或以上的價值(不同時間或者不同條件),只有一個變數,通常利用於較小的數據集分析。長條圖亦可橫向排列,或用多維方式表達。
那麼一個普通的條形圖是長什麼樣子的呢?
當!當!當!就是下圖的這個樣子:
圖先亮出來啦,接下來研究這個圖是怎麼畫的吧,先看一下原數據長什麼樣子:
實際畫圖的流程和畫折線圖很相近,只是用到的畫圖函數不一樣,繪制條形圖的函數plt.bar():
由於這只是最簡單的一個條形圖,實際上條形圖的函數plt.bar()還有不少可以探索的參數設置,和對折線圖函數plt.plot()的探索差不多,有興趣的孩子可以自己去進行探索哦。
按照條形長短進行排序展示的條形圖
當然也可以有其他的設置,比如說上圖中的線條高低參差不齊,這是因為x軸的數據是按照學校名稱進行排序的,那麼可不可以按照分數的高低進行排序呢?也就是讓所有的長方形按照從高到矮或者從矮到高的順序進行排列?
當然可以啦!這里需要強調的是,條的高低排列等信息都是來源於原數據的,要想讓條形的順序發生改變,需要對畫圖的來源數據進行更改呢!
把原數據逆序排序後截取前十名數據賦值給data_yuwen,作為新的數據源傳入畫圖函數plt.bar(),畫出來的圖自然就不一樣了。
先看一眼數據長什麼樣子:
根據這個數據源繪制出的圖形如下,由於用來畫圖的數據進行了降序排序操作,所以生成條形圖的條也會進行降序排序展示:
很多時候,我們常見的條形圖還有另一種展現形式,那就是橫向的條形圖,比較火的那種動態條形圖絕大多數也都是橫向的條形圖,那麼橫向的條形圖如何繪制呢?
理解plt.bar()主要參數
其實也不難,只要清楚plt.bar()函數中主要參數的作用就可以了!條形圖函數中有五個主要參數,分別是x,height,width,bottom,orientation。其中x控制的是每個條在x軸上位置,height控制的是每個條的長度,width控制的是每個條的寬度,bottom控制的是每個條在y軸方向的起始位置,orientation控制的是條形的方向,是縱向還是橫向,默認是縱向的。
通過一個小例子理解下這幾個參數的作用:
上邊的幾行代碼輸出的圖形如下:
對比著代碼和實際輸出的條形圖,各個主要參數的作用是不是一目瞭然啦?
橫向條形圖
理解了這幾個參數作用後,縱向的條形圖轉換成橫向的條形圖就沒什麼難度了!
需要設置所有條形在x軸的位置都為0,也就全部從最左側開始畫條形;由於是橫向條形圖,所以實際上條的寬度顯示的是數據大小,將width參數設置成原數據中的語文成績;bottom控制每個條在y軸方向的起始位置,設置bottom=range(10)設置每個條形在y軸的起始位置各不相同避免有條形重疊;height控制的是每個條在y軸方向上的長度,條形圖橫向設置後,在y軸上的長度失去了衡量數據的意義,所以直接設置一個常數即可;最後設置條形的方向為橫向,即orientation=「horizontal」。
溫馨提示:數據和標簽一定要匹配,即plt.bar()重點的數據要和plt.yticks()中提取出來的標簽一一對應,一旦不匹配,整個圖展現的結果就是一個錯誤的結果!
上述代碼生成的條形圖如下:
感覺上邊這種生成橫向條形圖的方式有點點繞,和人們的習慣認知有點不大一樣,難道畫一個橫向條形圖就非得轉變自己的習慣認知這么反人類嗎?
當然不是的,實際上有更簡單的方法繪制一個橫向條形圖,之所以沒有一開始就直接用這種簡單的方法,也是為了讓大家體會下條形圖參數的靈活設置而已,而且如果比較繞的方法都能理解了,簡單的方法理解和運用起來就更沒有難度了啊!
不賣關子了,我們來認識下和plt.bar()函數類似的plt.barh()函數。
plt.barh()函數是專門繪制水平條形圖的函數,主要的參數有:
y 控制y軸顯示的標簽來源width 控制橫向條形的長度,即用來進行對比的數據源height 條形的寬度需要設置的參數主要就是這三個,比用plt.bar()函數繪制水平條形圖簡單了很多,具體代碼如下:
效果圖:
和用plt.bar()函數繪制的橫向條形圖一毛一樣對不對?以後有需求繪制橫向條形圖,盡量用plt.barh()函數吧,畢竟它是專門繪制這種類型圖的,簡單好用。
然而實際工作中對於條形圖的需求不只是這些,比如例子中只是對各個學校語文成績的展示,有時候需要各個學科的成績同時展現在一幅條形圖中,有時候也需要繪制堆積條形圖對各學科的成績以及總成績進行展示,這些圖又該如何繪制呢?其實只要理解了各個參數的含義,繪制這些圖也不在話下,至於具體怎麼畫,且看下回分解啊!
『柒』 python matplotlib數據作圖
1、使用numpy生成一個長度為100的等差數列作為自變數,命名為x,分別使用三角函數sinx和cosx**2生成2個因變數,命名為y和z。
『捌』 python 繪制三維圖形、三維數據散點圖
1. 繪制3D曲面圖
from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig=plt.figure()
ax=Axes3D(fig)
x=np.arange(-4,4,0.25)
y=np.arange(-4,4,0.25)
x,y=np.meshgrid(x,y)
r=np.sqrt(x**2, y**2)
z=np.sin(r)
//繪面函數
ax.plot_surface(x,y,z,rstride=1,cstride=1,cmap=「rainbow」
plt.show()
2.繪制三維的散點圖(表述一些數據點分布)
4a.mat數據地址:http blog.csdn.net/eddy_zhang/article/details/50496164
from matplotlib import pyplot as plt
import scipy.io as sio
from mpl_toolkits.mplot3d import Axes3D
matl=『4a.mat』
data=sio.loadmat(matl)
m=data[『data』]
x,y,z=m[0],m[1],m[2]
//創建一個繪圖工程
ax=plt.subplot(111,project=『3D』)
//將數據點分成三部分畫,在顏色上有區分度
ax.scatter(x[:1000], y[:1000], z[:1000],c=『y』 )//繪制數據點
ax.scatter(x[1000:4000], y[1000:4000], z[1000:4000],c=『r』 )//繪制數據點
ax.scatter(x[4000:], y[4000:], z[4000:],c=『g』 )//繪制數據點
ax.set_zlable(『z』)//坐標軸
ax.set_ylable(『y』)//坐標軸
ax.set_xlable(『x』)
plt.show()
『玖』 用python對txt數據進行繪圖
## 繪制該文件中的數據
## 需要引入pylab庫,裡面用到的函數和MATLAB里的非常類似
def plotData(X, y):
length = len(y)
pylab.figure(1)
pylab.plot(X, y, 'rx')
pylab.xlabel('Population of City in 10,000s')
pylab.ylabel('Profit in $10,000s')
pylab.show()#讓繪制的圖像在屏幕上顯示出來
『拾』 如何利用python對大量數據作圖
可以在matplotlib的文檔中找到各種圖表類型,由於根據特定布局創建Figure和subplot是一件常見的任務,於是便出現一個更為方便的方法: plt.subplots,它可以創建一個新的Figure,且返回一個含有已創建的subplot對象的numpy數組。