導航:首頁 > 編程語言 > c多線程調用python

c多線程調用python

發布時間:2022-09-20 05:14:15

python怎麼能同時執行代碼(多線程)

多線程不是這個意思。
普通的單線程,比如
代碼塊A
循環代碼塊B
循環代碼塊C
代碼塊D
程序會按順序A,B,C,D這樣執行,而B循環如果沒有結束,C循環不會開始。
如果是多線程,
代碼塊A
新線程:循環代碼塊B
循環代碼塊C
代碼塊D
這樣,B循環新開一個線程運行,原來的線程會繼續運行C,B有沒有結束,不影響C

㈡ python 多進程和多線程配合

由於python的多線程中存在PIL鎖,因此python的多線程不能利用多核,那麼,由於現在的計算機是多核的,就不能充分利用計算機的多核資源。但是python中的多進程是可以跑在不同的cpu上的。因此,嘗試了多進程+多線程的方式,來做一個任務。比如:從中科大的鏡像源中下載多個rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()

regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)

rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)

thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25

res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'

start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718

代碼的功能主要是這樣的:
main()方法中調用get_rpm_url_list(base_url)方法,獲取要下載的每個rpm包的具體的url地址。其中base_url即中科大基礎的鏡像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,這個地址下有幾十個rpm包,get_rpm_url_list方法將每個rpm包的url地址拼出來並返回。
multi_process(rpm_url_list)啟動多進程方法,在該方法中,會調用多線程方法。該方法啟動4個多進程,將上面方法得到的rpm包的url地址進行分組,分成4組,然後每一個組中的rpm包再最後由不同的線程去執行。從而達到了多進程+多線程的配合使用。
代碼還有需要改進的地方,比如多進程啟動的進程個數和rpm包的url地址分組是硬編碼,這個還需要改進,畢竟,不同的機器,適合同時啟動的進程個數是不同的。

㈢ python怎樣使用多線程

連接對象可以是同一個,指針不能是同一個。
假設conn是你的連接對象
每個線程使用cur=conn.cursor()來獲得指針。

㈣ 在C++中多線程調用python函數,有什麼辦法

以前在遠標時也遇見過的確有多線程調用的沖突問題。 通常是初始化一個python解釋器。作為全局變數。然後每個線程分別調用。
因為python解釋器里有一個GIL的全局鎖。所以要防止線程間因為GIL造成的死鎖。
不過具體的使用方法,與單線程沒有區別。初始化python解釋器。然後載入腳本,運行,取得返回變數就可以了。
如果你使用system,就當我沒有說。 即使是使用system,也會有多線程的沖突可能性。因為操作系統的管道管理,相關文件,相關資料庫,臨時文件等都可能會產生沖突。

㈤ python多線程幾種方法實現

Python進階(二十六)-多線程實現同步的四種方式
臨界資源即那些一次只能被一個線程訪問的資源,典型例子就是列印機,它一次只能被一個程序用來執行列印功能,因為不能多個線程同時操作,而訪問這部分資源的代碼通常稱之為臨界區。
鎖機制
threading的Lock類,用該類的acquire函數進行加鎖,用realease函數進行解鎖
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.lock = threading.Lock() def add(self):
self.lock.acquire()#加鎖,鎖住相應的資源
self.num += 1
num = self.num
self.lock.release()#解鎖,離開該資源
return num

n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()#將num加1,並輸出原來的數據和+1之後的數據
print(self.item,value)for item in range(5):
t = jdThread(item)
t.start()
t.join()#使線程一個一個執行

當一個線程調用鎖的acquire()方法獲得鎖時,鎖就進入「locked」狀態。每次只有一個線程可以獲得鎖。如果此時另一個線程試圖獲得這個鎖,該線程就會變為「blocked」狀態,稱為「同步阻塞」(參見多線程的基本概念)。
直到擁有鎖的線程調用鎖的release()方法釋放鎖之後,鎖進入「unlocked」狀態。線程調度程序從處於同步阻塞狀態的線程中選擇一個來獲得鎖,並使得該線程進入運行(running)狀態。
信號量
信號量也提供acquire方法和release方法,每當調用acquire方法的時候,如果內部計數器大於0,則將其減1,如果內部計數器等於0,則會阻塞該線程,知道有線程調用了release方法將內部計數器更新到大於1位置。
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.sem = threading.Semaphore(value = 3) #允許最多三個線程同時訪問資源

def add(self):
self.sem.acquire()#內部計數器減1
self.num += 1
num = self.num
self.sem.release()#內部計數器加1
return num

n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()
print(self.item,value)for item in range(100):

㈥ 如何實現 C/C++ 與 Python 的通信

這個事情做過好多遍,摸索的過程基本這樣的:
1. 通過stdout通信...土到爆,但上手極快,簡單粗暴;
2. 調用原始的python.h 介面,編寫可以被python import 的so,支持python調用c++介面,c++介面調用python同樣的方式;
3. 使用boost-python 完成2中的功能,介面簡單很多,本質上沒有不同;

這里遇到的主要幾個問題在於:
1. 數據的序列化反序列化,因為有時c++和python之間通信的不是基本類型,可能是用戶自定義類型;
2. 多線程的問題,c++多線程調python介面時,需要注意GIL的使用,貌似因為python解釋器不是線程安全的;
3.

對象傳遞,大多數情況下,如果只是靜態介面調用,都比較簡單,考慮一種情況:c++中的對象的一個函數調用python一個介面,這個python介面中
又需要反過來調用這個對象中的另一個介面,這里就需要考慮怎麼把對象相互傳遞,我這里是把對象指針地址傳遞到python中,在python中調用一個
c++的靜態介面,帶上地址和其他需要的參數,在這個c++的靜態介面中,把地址轉換成指針在調用..

㈦ 如何讓python調用多線程來執行機器學習

Python在科學計算領域,有兩個重要的擴展模塊:Numpy和Scipy。其中Numpy是一個用python實現的科學計算包。包括:一個強大的N維數組對象Array;比較成熟的(廣播)函數庫;用於整合C/C++和Fortran代碼的工具包;實用的線性代數、傅里葉變換和隨機數生成函數。SciPy是一個開源的Python演算法庫和數學工具包,SciPy包含的模塊有最優化、線性代數、積分、插值、特殊函數、快速傅里葉變換、信號處理和圖像處理、常微分方程求解和其他科學與工程中常用的計算。其功能與軟體MATLAB、Scilab和GNUOctave類似。Numpy和Scipy常常結合著使用,Python大多數機器學習庫都依賴於這兩個模塊,繪圖和可視化依賴於matplotlib模塊,matplotlib的風格與matlab類似。Python機器學習庫非常多,而且大多數開源,主要有:1.scikit-learnscikit-learn是一個基於SciPy和Numpy的開源機器學習模塊,包括分類、回歸、聚類系列演算法,主要演算法有SVM、邏輯回歸、樸素貝葉斯、Kmeans、DBSCAN等,目前由INRI資助,偶爾Google也資助一點。

㈧ 如何使用Python進行多線程編程

1. 使用線程可以把占據長時間的程序中的任務放到後台去處理;
2. 用戶界面可以更加吸引人,這樣比如用戶點擊了一個按鈕去觸發某些事件的處理,可以彈出一個進度條來顯示處理的進度;
3. 程序的運行速度可能加快;
4. 在一些等待的任務實現上如用戶輸入、文件讀寫和網路收發數據等,線程就比較有用了。在這種情況下我們可以釋放一些珍貴的資源如內存佔用等等。

㈨ python多線程的幾種方法

Python進階(二十六)-多線程實現同步的四種方式
臨界資源即那些一次只能被一個線程訪問的資源,典型例子就是列印機,它一次只能被一個程序用來執行列印功能,因為不能多個線程同時操作,而訪問這部分資源的代碼通常稱之為臨界區。
鎖機制
threading的Lock類,用該類的acquire函數進行加鎖,用realease函數進行解鎖
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.lock = threading.Lock() def add(self):
self.lock.acquire()#加鎖,鎖住相應的資源
self.num += 1
num = self.num
self.lock.release()#解鎖,離開該資源
return num

n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()#將num加1,並輸出原來的數據和+1之後的數據
print(self.item,value)for item in range(5):
t = jdThread(item)
t.start()
t.join()#使線程一個一個執行

當一個線程調用鎖的acquire()方法獲得鎖時,鎖就進入「locked」狀態。每次只有一個線程可以獲得鎖。如果此時另一個線程試圖獲得這個鎖,該線程就會變為「blocked」狀態,稱為「同步阻塞」(參見多線程的基本概念)。
直到擁有鎖的線程調用鎖的release()方法釋放鎖之後,鎖進入「unlocked」狀態。線程調度程序從處於同步阻塞狀態的線程中選擇一個來獲得鎖,並使得該線程進入運行(running)狀態。
信號量
信號量也提供acquire方法和release方法,每當調用acquire方法的時候,如果內部計數器大於0,則將其減1,如果內部計數器等於0,則會阻塞該線程,知道有線程調用了release方法將內部計數器更新到大於1位置。
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.sem = threading.Semaphore(value = 3) #允許最多三個線程同時訪問資源

def add(self):
self.sem.acquire()#內部計數器減1
self.num += 1
num = self.num
self.sem.release()#內部計數器加1
return num

n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()
print(self.item,value)for item in range(100):

閱讀全文

與c多線程調用python相關的資料

熱點內容
壓縮因子定義 瀏覽:966
cd命令進不了c盤怎麼辦 瀏覽:212
葯業公司招程序員嗎 瀏覽:972
毛選pdf 瀏覽:657
linuxexecl函數 瀏覽:725
程序員異地戀結果 瀏覽:372
剖切的命令 瀏覽:226
干什麼可以賺錢開我的世界伺服器 瀏覽:288
php備案號 瀏覽:989
php視頻水印 瀏覽:166
怎麼追程序員的女生 瀏覽:487
空調外壓縮機電容 瀏覽:79
怎麼將安卓變成win 瀏覽:459
手機文件管理在哪兒新建文件夾 瀏覽:724
加密ts視頻怎麼合並 瀏覽:775
php如何寫app介面 瀏覽:804
宇宙的琴弦pdf 瀏覽:396
js項目提成計算器程序員 瀏覽:944
pdf光子 瀏覽:834
自拍軟體文件夾名稱大全 瀏覽:328