導航:首頁 > 編程語言 > python機器學習卷積網

python機器學習卷積網

發布時間:2022-09-24 02:53:15

Ⅰ 請問怎麼學習python

分享Python學習路線:

第一階段:Python基礎與Linux資料庫

這是Python的入門階段,也是幫助零基礎學員打好基礎的重要階段。你需要掌握Python基本語法規則及變數、邏輯控制、內置數據結構、文件操作、高級函數、模塊、常用標准庫模板、函數、異常處理、mysql使用、協程等知識點。

學習目標:掌握Python的基本語法,具備基礎的編程能力;掌握Linux基本操作命令,掌握MySQL進階內容,完成銀行自動提款機系統實戰、英漢詞典、歌詞解析器等項目。

第二階段:web全棧

這一部分主要學習web前端相關技術,你需要掌握html、cssJavaScript、JQuery、Bootstrap、web開發基礎、Vue、FIask Views、FIask模板、資料庫操作、FIask配置等知識。

學習目標:掌握web前端技術內容,掌握web後端框架,熟練使用FIask、Tornado、Django,可以完成數據監控後台的項目。

第三階段:數據分析+人工智慧

這部分主要是學習爬蟲相關的知識點,你需要掌握數據抓取、數據提取、數據存儲、爬蟲並發、動態網頁抓取、scrapy框架、分布式爬蟲、爬蟲攻防、數據結構、演算法等知識。

學習目標:可以掌握爬蟲、數據採集,數據機構與演算法進階和人工智慧技術。可以完成爬蟲攻防、圖片馬賽克、電影推薦系統、地震預測、人工智慧項目等階段項目。

第四階段:高級進階

這是Python高級知識點,你需要學習項目開發流程、部署、高並發、性能調優、Go語言基礎、區塊鏈入門等內容。

學習目標:可以掌握自動化運維與區塊鏈開發技術,可以完成自動化運維項目、區塊鏈等項目。

按照上面的Python學習路線圖學習完後,你基本上就可以成為一名合格的Python開發工程師。當然,想要快速成為企業競聘的精英人才,你需要有好的老師指導,還要有較多的項目積累實戰經驗。

對於Python開發有興趣的小夥伴們,不妨先從看看Python開發教程開始入門!B站上有很多的Python教學視頻,從基礎到高級的都有,還挺不錯的,知識點講的很細致,還有完整版的學習路線圖。也可以自己去看看,下載學習試試。

Ⅱ 學習python的話大概要學習哪些內容

想要學習Python,需要掌握的內容還是比較多的,對於自學的同學來說會有一些難度,不推薦自學能力差的人。我們將學習的過程劃分為4個階段,每個階段學習對應的內容,具體的學習順序如下:

Python學習順序:

①Python軟體開發基礎

想要系統學習,你可以考察對比一下開設有IT專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能,南京北大青鳥、中博軟體學院、南京課工場等都是不錯的選擇,建議實地考察對比一下。

祝你學有所成,望採納。

Ⅲ python深度學習中經過卷積神經網路訓練後的輸出怎樣查看

這兩個概念實際上是互相交叉的,例如,卷積神經網路(Convolutional neural networks,簡稱CNNs)就是一種深度的監督學習下的機器學習模型,而深度置信網(Deep Belief Nets,簡稱DBNs)就是一種無監督學習下的機器學習模型。

Ⅳ python數據分析需要哪些庫

1.Numpy庫
是Python開源的數值計算擴展工具,提供了Python對多維數組的支持,能夠支持高級的維度數組與矩陣運算。此外,針對數組運算也提供了大量的數學函數庫,Numpy是大部分Python科學計算的基礎,具有很多功能。
2.Pandas庫
是一個基於Numpy的數據分析包,為了解決數據分析任務而創建的。Pandas中納入了大量庫和標準的數據模型,提供了高效地操作大型數據集所需要的函數和方法,使用戶能快速便捷地處理數據。
3.Matplotlib庫
是一個用在Python中繪制數組的2D圖形庫,雖然它起源於模仿MATLAB圖形命令,但它獨立於MATLAB,可以通過Pythonic和面向對象的方式使用,是Python中Z出色的繪圖庫。主要用純Python語言編寫的,它大量使用Numpy和其他擴展代碼,即使對大型數組也能提供良好的性能。
4.Seaborn庫
是Python中基於Matplotlib的數據可視化工具,提供了很多高層封裝的函數,幫助數據分析人員快速繪制美觀的數據圖形,從而避免了許多額外的參數配置問題。
5.NLTK庫
被稱為使用Python進行教學和計算語言學工作的Z佳工具,以及用自然語言進行游戲的神奇圖書館。NLTK是一個領先的平台,用於構建使用人類語言數據的Python程序,它為超過50個語料庫和詞彙資源提供了易於使用的介面,還提供了一套文本處理庫,用於分類、標記化、詞干化、解析和語義推理、NLP庫的包裝器和一個活躍的討論社區。

Ⅳ python數據挖掘工具有哪些

1. Numpy


可以供給數組支撐,進行矢量運算,而且高效地處理函數,線性代數處理等。供給真實的數組,比起python內置列表來說, Numpy速度更快。一起,Scipy、Matplotlib、Pandas等庫都是源於 Numpy。由於 Numpy內置函數處理數據速度與C語言同一等級,建議使用時盡量用內置函數。


2.Scipy


根據Numpy,可以供給了真實的矩陣支撐,以及大量根據矩陣的數值計算模塊,包含:插值運算,線性代數、圖畫信號,快速傅里葉變換、優化處理、常微分方程求解等。


3. Pandas


源於NumPy,供給強壯的數據讀寫功用,支撐相似SQL的增刪改查,數據處理函數十分豐富,而且支撐時間序列剖析功用,靈敏地對數據進行剖析與探索,是python數據發掘,必不可少的東西。


Pandas根本數據結構是Series和DataFrame。Series是序列,相似一維數組,DataFrame相當於一張二維表格,相似二維數組,DataFrame的每一列都是一個Series。


4.Matplotlib


數據可視化最常用,也是醉好用的東西之一,python中聞名的繪圖庫,首要用於2維作圖,只需簡單幾行代碼可以生成各式的圖表,例如直方圖,條形圖,散點圖等,也可以進行簡單的3維繪圖。


5.Scikit-Learn


Scikit-Learn源於NumPy、Scipy和Matplotlib,是一 款功用強壯的機器學習python庫,可以供給完整的學習東西箱(數據處理,回歸,分類,聚類,猜測,模型剖析等),使用起來簡單。缺乏是沒有供給神經網路,以及深度學習等模型。


6.Keras


根據Theano的一款深度學習python庫,不僅可以用來建立普通神經網路,還能建各種深度學習模型,例如:自編碼器、循環神經網路、遞歸神經網路、卷積神經網路等,重要的是,運轉速度幾塊,對建立各種神經網路模型的過程進行簡化,可以答應普通用戶,輕松地建立幾百個輸入節點的深層神經網路,定製程度也十分高。


關於 python數據挖掘工具有哪些,環球青藤小編就和大家分享到這里了,學習是沒有盡頭的,學習一項技能更是受益終身,因此,只要肯努力學,什麼時候開始都不晚。如若你還想繼續了解關於python編程的素材及學習方法等內容,可以點擊本站其他文章學習。

Ⅵ 如何運用機器學習解決復雜系統的預測問題

現實生活中預測通常難做到精準,比如股市,自然災害, 長久的天氣預測。

在市場這種系統里, 有兩個關鍵要素, 一個是個體和個體之間的互相作用(博弈),一個是系統與外部環境(地球資源)之間的相互作用(反饋),因此而形成復雜模式(Pattern), 這種模式通常很難預測。
而這種類型的系統我們通常定義為復雜系統: 由大量單元互相作用組成的系統, 由於集體行為的非線性(總體不等於個體之和), 而形成具備無數層級的復雜組織。或者稱為涌現性。
復雜科學即研究復雜系統的一套聯系不同尺度現象的數學方法。在人類試圖理解那些和自身生存最相關的東西時,而經典物理學的還原論(把整體拆成部分)思維的卻不適用。物理預測的核心方法是動力學方法, 即人們由實驗出發抽象出引起運動改變的原因, 把這些原因量化為變數,用微分方程來描述, 從而取得對整個未來的精確解,如麥克斯韋方程組可以預測從光波的速度到磁線圈轉動發電任何的電磁學現象。而你卻無法通過了解市場上每個人的特性就很好的預測整個市場走勢。
復雜系統難以預測的原理可以從以下幾方面理解:
1, 高維詛咒: 構成現實生活的系統往往被大量未知變數決定, 比如生物由無數的細胞組成。 基因,是由無數獨立的單元組成的, 市場, 由無數的交易者組成, 這些用物理的描述方法來預測, 就是極高維度空間的運動問題。維度,首先使得再簡單的方程形式都十分復雜難解。
此處補充維度的科學定義: 維度是一個系統里可以獨立變化的變數個數, 一個有非常多變數的系統,如復雜網路,假如每個變數不是互相獨立,也可以是低維系統。 比如一個軍營里的方陣,即使人數眾多, 也會因為大家都做著一模一樣的動作,而只有一個獨立變數,成為一維系統。
2, 非線性詛咒:高維度系統的維度之間具有復雜的相互作用,導致我們不能把系統分解為單一維度然後做加法的方法研究。 高維加上非線性我們將得到對初級極為敏感的混沌系統。

非線性的一個重要推論是組織的產生, 因為非線性,1+1可以大於2或小於2, 為組織的產生提供了理論基礎。
3, 反饋詛咒: 復雜系統中反饋無處不在, 即使是一個簡單的一維系統, 反饋也可以使得系統的特性很豐富, 最典型的反饋是某種記憶效應, 使得系統產生復雜的路徑依賴, 此刻你的現實與歷史深刻關聯,而關聯方法導致復雜的模式產生。
反身性是一種由預測產生的特殊反饋, 當你預測股市的價格, 會引起你的交易策略變化從而影響你的預測, 是為反身性。
4, 隨機詛咒: 復雜系統往往含有不包含確定規律的隨機雜訊,加上這些雜訊, 系統的行為更加難預測, 而很多時候, 我們也無法區分一個系統里發現的模式是雜訊導致還是由於元件之間的相互作用。
這四大詛咒是這些系統難以理解和預測的原因, 而這個時候, 復雜系統和機器學習的方法論可以作為一種非常有力的手段幫我們從復雜性中挖掘模式。
第一種方法叫模型驅動(Model approch), 即想辦法找到事物變化的原因, 用一種降維的思路列出微分方程, 即從非常繁復的要素中化簡出最重要的一個或者兩個, 從而化繁瑣為簡單,不管三七二十一先抓住主要矛盾。其中的範例便是非線性動力學。
註: 此處我們有兩個基本假設讓非線性動力學得到簡化,一個是只討論連續變數,另一個是不考慮系統內的隨機性(無雜訊項)。
1, 如果一個系統可以化簡到一維, 那麼你只需要研究其內部存在的反饋性質並描述它即可。 負反饋導致穩定定點產生, 正反饋導致不穩定性。 很多事物多可以抽象為一維系統,包括簡單環境下的人口增長問題。
2, 如果一個系統可以化簡到二維, 那麼你需要研究兩個維度間的相互作用,最終可以互為負反饋而穩定下來,互為正反饋而爆發,或者產生此消彼長的周期軌道。 比如戀愛中的男女是個二維系統, 互為負反饋就回到普通朋友, 互為正反饋在愛欲中爆發-比如羅密歐與朱麗葉, 此消彼長那是玩捉迷藏的周期游戲。
3, 如果一個系統是三維的, 則混沌可能產生。 混沌即對初值極為敏感的運動體系。 你一旦偏離既定軌道一點, 即幾乎無法回去。
4, 如果一個系統大於三維, 那麼你需要用一個復雜網路描述它的運動, 這個時候我們可以得到我們復雜系統的主角- collective phenomena & emergence。 復雜網路的性質主要取決於單體間相互作用的方式, 以及系統與外界交換能量的方法, 這兩者又息息相關。 最終我們得到涌現。

復雜網路的動力學往往混沌難以預測,對於高維混沌系統, 第一個方法也只能給出對事物定性的描述, 而我們可以祭出我們的第二種方法: 先不管數據背後錯綜復雜的動因,而是直接以數據驅動我們的預測。
這其中的哲學內涵即貝葉斯分析框架: 即先不預測, 而是列出所有可能的結果及根據以往知識和經驗每種結果發生的可能性(先驗概率),之後不停吸收新觀測數據, 調整每種可能結果的概率大小(後驗概率),將想得到的結果概率最大化(MAP)最終做出決策。
如果你把貝葉斯分析的框架自動化, 讓電腦完成, 你就得到機器學習的最基本框架。
機器學習如果可以進入一個問題中, 往往要具備三個條件:
1, 系統中可能存在模式
2, 這種模式不是一般解析手段可以猜測到的。
3, 數據可以獲取。
如果三點有一點不符,都很難運用機器學習。
機器學習的一個核心任務即模式識別, 也可以看出它和剛才講的復雜系統提到的模式的關系。我們講復雜系統難以通過其成分的分析對整體進行預測,然而由於復雜系統通常存在模式, 我們通常可以模式識別來對系統進行歸類, 並預測各種可能的未來結果。比如一個投行女因為工作壓力過大而自殺了, 那麼在她之前的活動行為數據(比如點擊手機的某些app的頻率)里是否可能存在某種模式? 這種模式是否可以判定她之後的行為類型? 並且這個過程可否通過歷史數據由計算機學習?如果都可以,這就是一個機器學習問題。
剛才講的幾大詛咒, 高維, 非線性, 復雜反饋,隨機性也稱為機器學習需要核心面對的幾大困難, 由此得到一系列機器學習的核心演算法。

機器學習在現實生活中被用於非常多的方面, 最常見的如商務洞察(分類,聚類, 推薦演算法), 智能語音語義服務(時間序列處理,循環網路), 各種自動鑒別系統如人臉識別,虹膜識別 ,癌症檢測(深度卷積網路), 阿爾法狗,機器人控制(深度強化學習演算法)。 而由方法論分, 又可以分成有監督學習, 無監督學習, 和強化學習。

在八月份的巡洋艦科技的《機器學習vs復雜系統特訓課》中,我著重講了幾種機器學習的基本方法:
1. 貝葉斯決策的基本思想:
你要讓機器做決策, 一個基本的思路是從統計之前數據挖掘已有的模式(pattern)入手, 來掌握新的數據中蘊含的信息。 這個pattern在有監督學習的例子里, 就是把某種數據結構和假設結論關聯起來的過程,我們通常用條件概率描述。 那麼讓機器做決策, 就是通過不停的通過新數據來調整這個數據結構(特徵)與假設結果對應的條件概率。通常我們要把我們預先對某領域的知識作為預設(prior),它是一個假設結果在數據收集前的概率密度函數,然後通過收集數據我們得到調整後的假設結果的概率密度函數, 被稱為後驗概率(posterior),最終的目標是機器得到的概率密度函數與真實情況最匹配, 即 Maximum a posterior(MAP), 這是機器學習的最終目標。
2, 樸素貝葉斯分類器到貝葉斯網路:
分類,是決策的基礎,商業中要根據收集客戶的消費特徵將客戶分類從而精準營銷。 金融中你要根據一些交易行為的基本特徵將交易者做分類。 從貝葉斯分析的基本思路出發我們可以迅速得到幾種分類器。
首當其沖的樸素貝葉斯分類器,它是機器學習一個特別質朴而深刻的模型:當你要根據多個特徵而非一個特徵對數據進行分類的時候,我們可以假設這些特徵相互獨立(或者你先假設相互獨立),然後利用條件概率乘法法則得到每一個分類的概率, 然後選擇概率最大的那個作為機器的判定。
圖: 樸素貝葉斯分類器的基本框架, c是類別, A是特徵。
如果你要根據做出分類的特徵不是互相獨立,而是互相具有復雜關聯,這也是大部分時候我們面臨問題的真相, 我們需要更復雜的工具即貝葉斯網路。 比如你對某些病例的判定, 咳嗽, 發燒, 喉嚨腫痛都可以看做扁條體發炎的癥候, 而這些癥候有些又互為因果, 此時貝葉斯網路是做出此類判定的最好方法。構建一個貝葉斯網路的關鍵是建立圖模型 , 我們需要把所有特徵間的因果聯系用箭頭連在一起, 最後計算各個分類的概率。

圖:貝葉斯網路對MetaStatic Cancer的診斷,此處的特徵具有復雜因果聯系
貝葉斯分析結合一些更強的假設,可以讓我們得到一些經常使用的通用分類器, 如邏輯斯提回歸模型,這里我們用到了物理里的熵最大假設得到玻爾茲曼分布, 因此之前簡單貝葉斯的各個特徵成立概率的乘積就可以轉化為指數特徵的加權平均。 這是我們日常最常用的分類器之一。 更加神奇的是, 這個東西形式上同單層神經網路。

圖: logistic函數,數學形式通玻爾茲曼分布, 物理里熵最大模型的體現
3, 貝葉斯時間序列分析之隱馬模型:
貝葉斯時間序列分析被用於挖掘存儲於時間中的模式,時間序列值得是一組隨時間變化的隨機變數,比如玩牌的時候你對手先後撒出的牌即構成一個時間序列。 時間序列模式的預設setting即馬爾科夫鏈, 之前動力學模式里講到反饋導致復雜歷史路徑依賴,當這種依賴的最簡單模式是下一刻可能出現的狀態只與此刻的狀態有關而與歷史無關, 這時候我們得到馬爾科夫鏈。
馬爾科夫鏈雖然是貝葉斯時間序列分析的基準模型,然而現實生活中遇到的時間序列問題, 通常不能歸於馬爾科夫鏈,卻可以間接的與馬爾科夫鏈關聯起來,這就是隱馬過程,所謂含有隱變數的馬爾科夫過程。

圖: 隱馬過程示意

語音識別就是一類特別能利用隱馬過程的應用, 在這里語音可以看做一組可觀測的時間序列, 而背後的文字是與之關聯的馬爾科夫鏈, 我們需要從可觀測的量, 按照一定的概率分布反推不可觀測的量, 並用馬爾科夫鏈的觀點對其建模, 從而解決從語音到文字的反推過程。 當今的語音識別則用到下面緊接講的深度學習模型。
4, 深度學習
剛剛講的分類問題, 只能根據我們已知的簡單特徵對事物進行分類, 但假設我們手裡的數據連需要提取的特徵都不知道, 我們如何能夠對事物進行分類呢? 比如你要從照片識別人名, 你都不知道選哪個特徵和一個人關聯起來。 沒關系, 此時我們還有一個辦法, 就是讓機器自發學習特徵, 因此祭出深度學習大法。通常在這類問題里, 特徵本身構成一個復雜網路,下級的特徵比較好確定, 而最高層的特徵, 是由底層特徵的組合確定的, 連我們人類自己都不能抽象出它們。
深度學習即數據內涵的模式(特徵)本身具備上述的多層級結構時候,我們的機器學習方法。 從以毒攻毒的角度看, 此時我們的機器學習機器也需要具有類似的多級結構,這就是大名鼎鼎的多層卷積神經網路。深度學習最大的優勢是具有更高級的對「結構」進行自動挖掘的能力,比如它不需要我們給出所有的特徵,而是自發去尋找最合適對數據集進行描述的特徵。 一個復雜模式-比如「人臉」 事實上可以看做一個簡單模式的層級疊加, 從人臉上的輪廓紋理這種底層模式, 到眼睛鼻子這樣的中級模式, 直到一個獨特個體這樣最高級的復雜模式, 你只有能夠識別底層模式,才有可能找到中級模式, 而找到中級模式才方便找到高級模式, 我們是不能從像素里一步到達這種復雜模式的。 而是需要學習這種從簡單模式到復雜模式的結構, 多層網路的結構應運而生。
圖: 從具體特徵到抽象特徵逐級深入的多級神經網路
6, RNN和神經圖靈機
如果時間序列數據里的模式也包含復雜的多層級結構, 這里和我之前說的復雜系統往往由於反饋導致復雜的時間依賴是一致的, 那麼要挖掘這種系統里的模式, 我們通常的工具就是超級前衛的循環神經網路RNN,這種工具對處理高維具有復雜反饋的系統有神效, 因為它本身就是一個高維具有復雜時間反饋的動力學系統。
圖: 循環神經網路, 過去的信息可以通過循環存儲在神經元之間
當一個復雜時間序列的問題裡面, 每個時間點的信息都可以對未來以任何方式產生復雜影響, 那麼處理這種復雜性的一個辦法就是用循環神經網路,讓它自發學習這種復雜結構。 比如一個城市裡的交通流, 或者人與人之間的對話。
神經圖靈機是在多層卷積神經網路或遞歸網路基礎上加上一個較長期的記憶單元, 從而達到處理需要更復雜時間關聯的任務, 比如對話機器人。 而神經圖靈機最厲害的地方在於他可以通過機器學習傳統的梯度下降法反向破譯一個程序, 比如你寫了一個python程序, 你用很多不同的輸入得到很多對應的輸出, 你可以把它給神經圖靈機訓練, 最終本來對程序絲毫無所知的神經圖靈機居然可以如同學會了這個程序。

Ⅶ 卷積神經網路 為什麼優於 機器學習

首先搞清楚機器學習以及卷積神經網路概念。其實卷積神經網路是機器學習中的一種演算法。主要用於圖像特徵提取。而機器學習主要指統計機器學習。而機器學習有三個要素:1、模型2、策略3、演算法,CNN屬於一種演算法。所以沒有什麼優於的說法。

Ⅷ 深度學習 python怎麼入門 知乎

自學深度學習是一個漫長而艱巨的過程。您需要有很強的線性代數和微積分背景,良好的Python編程技能,並扎實掌握數據科學、機器學習和數據工程。即便如此,在你開始將深度學習應用於現實世界的問題,並有可能找到一份深度學習工程師的工作之前,你可能需要一年多的學習和實踐。然而,知道從哪裡開始,對軟化學習曲線有很大幫助。如果我必須重新學習Python的深度學習,我會從Andrew Trask寫的Grokking deep learning開始。大多數關於深度學習的書籍都要求具備機器學習概念和演算法的基本知識。除了基本的數學和編程技能之外,Trask的書不需要任何先決條件就能教你深度學習的基礎知識。這本書不會讓你成為一個深度學習的向導(它也沒有做這樣的聲明),但它會讓你走上一條道路,讓你更容易從更高級的書和課程中學習。用Python構建人工神經元
大多數深度學習書籍都是基於一些流行的Python庫,如TensorFlow、PyTorch或Keras。相比之下,《運用深度學習》(Grokking Deep Learning)通過從零開始、一行一行地構建內容來教你進行深度學習。

《運用深度學習》
你首先要開發一個人工神經元,這是深度學習的最基本元素。查斯克將帶領您了解線性變換的基本知識,這是由人工神經元完成的主要計算。然後用普通的Python代碼實現人工神經元,無需使用任何特殊的庫。
這不是進行深度學習的最有效方式,因為Python有許多庫,它們利用計算機的圖形卡和CPU的並行處理能力來加速計算。但是用普通的Python編寫一切對於學習深度學習的來龍去是非常好的。
在Grokking深度學習中,你的第一個人工神經元只接受一個輸入,將其乘以一個隨機權重,然後做出預測。然後測量預測誤差,並應用梯度下降法在正確的方向上調整神經元的權重。有了單個神經元、單個輸入和單個輸出,理解和實現這個概念變得非常容易。您將逐漸增加模型的復雜性,使用多個輸入維度、預測多個輸出、應用批處理學習、調整學習速率等等。
您將通過逐步添加和修改前面章節中編寫的Python代碼來實現每個新概念,逐步創建用於進行預測、計算錯誤、應用糾正等的函數列表。當您從標量計算轉移到向量計算時,您將從普通的Python操作轉移到Numpy,這是一個特別擅長並行計算的庫,在機器學習和深度學習社區中非常流行。
Python的深度神經網路
有了這些人造神經元的基本構造塊,你就可以開始創建深層神經網路,這基本上就是你將幾層人造神經元疊放在一起時得到的結果。
當您創建深度神經網路時,您將了解激活函數,並應用它們打破堆疊層的線性並創建分類輸出。同樣,您將在Numpy函數的幫助下自己實現所有功能。您還將學習計算梯度和傳播錯誤通過層傳播校正跨不同的神經元。

隨著您越來越熟悉深度學習的基礎知識,您將學習並實現更高級的概念。這本書的特點是一些流行的正規化技術,如早期停止和退出。您還將獲得自己版本的卷積神經網路(CNN)和循環神經網路(RNN)。
在本書結束時,您將把所有內容打包到一個完整的Python深度學習庫中,創建自己的層次結構類、激活函數和神經網路體系結構(在這一部分,您將需要面向對象的編程技能)。如果您已經使用過Keras和PyTorch等其他Python庫,那麼您會發現最終的體系結構非常熟悉。如果您沒有,您將在將來更容易地適應這些庫。
在整本書中,查斯克提醒你熟能生巧;他鼓勵你用心編寫自己的神經網路,而不是復制粘貼任何東西。
代碼庫有點麻煩
並不是所有關於Grokking深度學習的東西都是完美的。在之前的一篇文章中,我說過定義一本好書的主要內容之一就是代碼庫。在這方面,查斯克本可以做得更好。
在GitHub的Grokking深度學習庫中,每一章都有豐富的jupiter Notebook文件。jupiter Notebook是一個學習Python機器學習和深度學習的優秀工具。然而,jupiter的優勢在於將代碼分解為幾個可以獨立執行和測試的小單元。Grokking深度學習的一些筆記本是由非常大的單元格組成的,其中包含大量未注釋的代碼。

這在後面的章節中會變得尤其困難,因為代碼會變得更長更復雜,在筆記本中尋找自己的方法會變得非常乏味。作為一個原則問題,教育材料的代碼應該被分解成小單元格,並在關鍵區域包含注釋。
此外,Trask在Python 2.7中編寫了這些代碼。雖然他已經確保了代碼在Python 3中也能順暢地工作,但它包含了已經被Python開發人員棄用的舊編碼技術(例如使用「for i in range(len(array))」範式在數組上迭代)。
更廣闊的人工智慧圖景
Trask已經完成了一項偉大的工作,它匯集了一本書,既可以為初學者,也可以為有經驗的Python深度學習開發人員填補他們的知識空白。
但正如泰溫·蘭尼斯特(Tywin Lannister)所說(每個工程師都會同意),「每個任務都有一個工具,每個工具都有一個任務。」深度學習並不是一根可以解決所有人工智慧問題的魔杖。事實上,對於許多問題,更簡單的機器學習演算法,如線性回歸和決策樹,將表現得和深度學習一樣好,而對於其他問題,基於規則的技術,如正則表達式和幾個if-else子句,將優於兩者。

關鍵是,你需要一整套工具和技術來解決AI問題。希望Grokking深度學習能夠幫助你開始獲取這些工具。
你要去哪裡?我當然建議選擇一本關於Python深度學習的深度書籍,比如PyTorch的深度學習或Python的深度學習。你還應該加深你對其他機器學習演算法和技術的了解。我最喜歡的兩本書是《動手機器學習》和《Python機器學習》。
你也可以通過瀏覽機器學習和深度學習論壇,如r/MachineLearning和r/deeplearning subreddits,人工智慧和深度學習Facebook組,或通過在Twitter上關注人工智慧研究人員來獲取大量知識。
AI的世界是巨大的,並且在快速擴張,還有很多東西需要學習。如果這是你關於深度學習的第一本書,那麼這是一個神奇旅程的開始。

Ⅸ Python數據分析具體要學習哪些內容

不同的培訓機構在Python培訓內容上也各有不同,小U在這里以優就業為例給大家簡單介紹。優就業的Python課程以項目實戰為導向,一共設置了5大階段,主要學習內容如下:

第一階段:Python核心編程——Python語言基本介紹、面向對象編程、Linux操作系統、文件系統與用戶管理、進程管理與服務配置、Shell編程與bash,源文件編譯、版本控制、MySQL使用、MySQL進階等。

第二階段:全棧開發——HTML、CSS、JavaScript、jQuery、 BootStrap、Vue、Web開發基礎、資料庫操作、FLask配置、Django認識、Models、Templates、Views、Tornado框架進階、ElasticSearch等。

第三階段:網路爬蟲——爬蟲與數據、Scrapy框架、Scrapy框架與信息實時抓取、定時爬取與郵件監控、NoSQL資料庫、Scrapy-Redis框架、百萬量數據採集等。

第四階段:人工智慧——數據分析、pyechart模塊動態可視化、詞雲、分類演算法、聚類演算法、回歸類演算法、關聯演算法、卷積神經網路、TensorFlow+PaddlePaddle、圖像識別等。

第五階段:就業指導——最後就業指導分為面試就業指導、專業技術指導兩方面。

Python培訓學習路線都是基於培訓內容制定的,優就業的Python課程針對零基礎學生開設,所以學習路線設置也是由淺入深,循序漸進。

首先學習Python語言基礎+Linux+MySQL,這部分內容是初級Python工程師需要掌握的;

其次學習Python web編程基礎+Flask框架+Django框架+Tornado框架,這部分內容是Python web工程師需要掌握的;

接下來學習數據爬取+Scrapy框架+分布式爬蟲框架,這部分內容是爬蟲工程師需要掌握的;

最後學習數據分析+機器學習+深度學習,這部分內容學習完成是數據分析工程師、人工智慧工程師需要掌握的。

優就業Python培訓班面向零基礎人員開設,講師都是擁有多年的實戰開發經驗和授課經驗,始終致力於給學員更好的課程培訓和學習體驗。

綜上,相信大家對「Python培訓內容有哪些?學習路線是如何規劃的?」都有了一定的了解,希望對您有所幫助。點擊這里領取我們線上學習免費課程。更多關於Python培訓的問題,可以持續關注浙江優就業官方網站以及浙江優就業公眾號具體了解哦。如果大家有時間的話,最好是能到我們線下基地進行實地考察。

浙江優就業教育:http://zhejiang.ujiuye.com/

Ⅹ Python課程內容都學習什麼啊

賀聖軍Python輕松入門到項目實戰(經典完整版)(超清視頻)網路網盤

鏈接: https://pan..com/s/1C9k1o65FuQKNe68L3xEx3w

提取碼: ja8v 復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題歡迎追問~

閱讀全文

與python機器學習卷積網相關的資料

熱點內容
程序員留學移民 瀏覽:47
梁中間部位箍筋加密區 瀏覽:117
頻譜分析pdf 瀏覽:750
樂2怎麼升級安卓70 瀏覽:172
java中獲取日期 瀏覽:506
單片機74hc245 瀏覽:272
美國歷史上的總統pdf 瀏覽:751
程序員脫單實驗室靠不靠譜 瀏覽:458
php中間四位手機號 瀏覽:869
永旺app怎麼樣了 瀏覽:516
壓縮空氣流量計算軟體 瀏覽:649
智慧聊天app怎麼激活 瀏覽:924
一加換機備份到哪個文件夾 瀏覽:735
支撐pdf 瀏覽:417
java空文件夾刪除 瀏覽:587
安卓9跟81有什麼區別 瀏覽:912
n1藍寶書pdf 瀏覽:244
為什麼安卓機拍照那麼丑 瀏覽:695
伺服器綁定雲產品實例 瀏覽:314
程序員認真工作被開除 瀏覽:455