㈠ python 常用的標准庫以及第三方庫有哪些
標准庫
Python擁有一個強大的標准庫。Python語言的核心只包含數字、字元串、列表、字典、文件等常見類型和函數,而由Python標准庫提供了系統管理、網路通信、文本處理、資料庫介面、圖形系統、XML處理等額外的功能。
Python標准庫的主要功能有:
1.文本處理,包含文本格式化、正則表達式匹配、文本差異計算與合並、Unicode支持,二進制數據處理等功能
2.文件處理,包含文件操作、創建臨時文件、文件壓縮與歸檔、操作配置文件等功能
3.操作系統功能,包含線程與進程支持、IO復用、日期與時間處理、調用系統函數、日誌(logging)等功能
4.網路通信,包含網路套接字,SSL加密通信、非同步網路通信等功能
5.網路協議,支持HTTP,FTP,SMTP,POP,IMAP,NNTP,XMLRPC等多種網路協議,並提供了編寫網路伺服器的框架
6.W3C格式支持,包含HTML,SGML,XML的處理。
7.其它功能,包括國際化支持、數學運算、HASH、Tkinter等
Python社區提供了大量的第三方模塊,使用方式與標准庫類似。它們的功能覆蓋科學計算、Web開發、資料庫介面、圖形系統多個領域。第三方模塊可以使用Python或者C語言編寫。SWIG,SIP常用於將C語言編寫的程序庫轉化為Python模塊。Boost C++ Libraries包含了一組函式庫,Boost.Python,使得以Python或C++編寫的程式能互相調用。Python常被用做其他語言與工具之間的「膠水」語言。
著名第三方庫
1.Web框架
Django: 開源Web開發框架,它鼓勵快速開發,並遵循MVC設計,開發周期短。
ActiveGrid: 企業級的Web2.0解決方案。
Karrigell: 簡單的Web框架,自身包含了Web服務,py腳本引擎和純python的資料庫PyDBLite。
Tornado: 一個輕量級的Web框架,內置非阻塞式伺服器,而且速度相當快
webpy: 一個小巧靈活的Web框架,雖然簡單但是功能強大。
CherryPy: 基於Python的Web應用程序開發框架。
Pylons: 基於Python的一個極其高效和可靠的Web開發框架。
Zope: 開源的Web應用伺服器。
TurboGears: 基於Python的MVC風格的Web應用程序框架。
Twisted: 流行的網路編程庫,大型Web框架。
Quixote: Web開發框架。
㈡ python的作用
萬能編程語言「Python」的五大主要用途:
1、web開發
Python的誕生歷史比ewb還要早,由於Python是一種解釋型的腳本語言,開發效率高,所有非常適合用來做web開發。
Python有上百種web開發框架,有很多成熟的模板技術,選擇Python開發web應用,不但開發效率高,而且運行速度快。
常見的web開發框架:Django、flask、tornado等。
2、網路爬蟲
網路爬蟲是Python比較常用的一個場景,國際上,Google在早期大量地使用Python語言作為網路爬蟲的基礎,帶動了整個Python語言的應用發展。以前國內很多人用採集器搜刮網上的內容,現在用Python收集網上信息比以前容易了許多。比如:從各大網站抓取商品折扣信息,比較獲取最優選擇;對社交網路上發言進行收集分類,生成情緒地圖,分析語言習慣……爬蟲應用很多,幾乎每個人學習爬蟲之後都能夠通過爬蟲去做一些好玩有趣且有用的事情。
3、人工智慧
人工智慧是現在非常火的一個方向,AI熱潮讓Python語言的未來充滿了無限的潛力。
因為Python有很多庫很方便做人工智慧,比如Numpy、Scipy做數值計算的,Sklearn做機器學習的,pybrain做神經網路的,matplotlib做數據可視化的。在人工智慧大范疇領域內的數據挖掘、機器學習、神經網路、深度學習等方面都是主流的編程語言,得到廣泛的支持和應用。
4、數據分析
數據分析處理方面,Python有很完備的生態環境。大數據分析中涉及到的分布式計算、數據可視化、資料庫操作等,Python中都有成熟的模塊可以選擇完成其功能。對於Hadoop-MapRece和Spark,都可以直接使用Python完成計算邏輯,這無論對於數據科學家還是對於數據工程師而言都是十分便利的。
5、自動化運維
Python對於伺服器運維而言也有十分重要的用途。由於目前幾乎所有Linux發行版本都自帶了Python解釋器,使用Python腳本進行批量化的文件部署和運行調整都成了Linux伺服器上很不錯的選擇。Python中也包含了許多方便的工具,從調控ssh/sftp用的paramiko,到監控服務用的supervisor,再到bazel等構建工具,甚至conan等用於C++的包管理工具,Python提供了全方位的工具集合,而在這基礎上,結合web,開發方便運維的工具會變得十分簡單。
㈢ 話說python一般都用什麼資料庫
內置sqlite庫,其他資料庫需要自己安裝,常用的都支持 mysql
㈣ python如何訪問資料庫
1.背景:
python提供了很多資料庫介面, 常用的資料庫有 MS SQL Server /mysql /oracle 等。
打開鏈接 https://wiki.python.org/moin/DatabaseInterfaces
是python 關於資料庫介面的一個總結 , 可以看到python支持的訪問的資料庫系統。
2.模塊:
python 主要是通過模塊和資料庫連接的。
2.1 安裝模塊:
如果使用anconda,本身就會集合很多模塊,不需要手動安裝。如果用pycharm就要手動安裝模塊。
安裝模塊流程:
下載模塊擴展包放到路徑下——>cmd找到相應路徑——> pip install +擴展包名字
下面列舉一些常用連接資料庫的模塊:pymssql / sqlite3/ PyMySQL/pyodbc/odbc/adodbapi
不同模塊連接的資料庫不同, 支持的版本系統有的也不一樣。但是大體用法都是相近的, 因為有DB-API
相關推薦:《Python教程》
3.Python DB-API
3.1背景:
在沒有DB-API 之前, 不同資料庫有不同的資料庫介面程序, 這就導致python 訪問 database 的介面程序非常混亂。如果我們學習了python 訪問 mysql 的介面程序, 然後要切換到另一個資料庫上, 我們還要在學習另外一個資料庫的介面程序。python DB-API就是為了解決介面程序混亂而生成的。有了DB-API, 在不同資料庫上移植代碼就變得簡單的多了。
3.2Python DB-API:
Python 定義了一套操作資料庫的 DB-API 介面,它是一個規范,定義了一系列必須的對象和資料庫存取方式,以便為不同的底層資料庫系統提供一致的訪問介面
這個鏈接就是python 官方給定的 DB-API 的說明 https://www.python.org/dev/peps/pep-0249/
3.3 Python DB--API的內容:
連接對象:
?Connect()創建連接:host/server /user/password/db connect方法生成一個connect對象, 我們通過這個對象來訪問資料庫。符合標準的模塊都會實現connect方法。
?close():關閉連接
?commit():提交當前事務。做出某些更改後確保已經進行了提交,這樣才可以將這些修改真正地保存到database中
?rollback() 回滾上一次調用 commit()以來對資料庫所做的更改
?cursor():創建游標。系統為用戶開通的一個數據緩沖區,用於存放SQL語句執行結果。cursor游標是有狀態的,它可以記錄當前已經取到結果的第幾個記錄了,因此,一般你只可以遍歷結果集一次。在上面的情況下,如果執行fetchone()會返回為空。這一點在測試時需要注意
游標對象:
?Execute()執行一個資料庫查詢或命令。 execute 執行sql 語句之後運行的結果不會直接output 出來 , 而是放到了一個緩存區, 要用 fetch語句+print 可以查詢sql運行的結果
?fetchone ()得到結果集的下一行
?fetchmany(size)得到結果集的下幾行
?fetchall()返回結果集中剩下的所有行
?rowcount 返回影響的行數
?Close()關閉游標對象
3.4Python DB--API的工作原理及流程:
如圖所示如果把python 和資料庫比作兩個不同的地點, connection 就是路, 能連接python和database。cursor就像在路上行駛的小貨車, 可以用於執行sql 語句, 以及存儲sql 運行的結果。
流程:
4.MS SQL Server 示例:
4.1 導入模塊、創建連接:
4.2 創建游標: 游標創建之後就可以對資料庫進行查詢更改了!
4.3對數據進行操作(創建表、插入行、更新數據、增加列、刪除行、列、表):
4.4 查詢 獲取行:
5.其他:
使用游標的時候要注意, 每次連接只能有一個游標查詢處於活躍狀態。 code演示:
execute()循環和 executemany() 插入100000 條數據測速:
㈤ Python 入門需要學些什麼
Python相對比較簡單,零基礎也能學。系統學習的話,一般4-6個月左右能學好。
建議大家可以從以下三方面來入手:
①先自學一些python書籍
大家可以從書中了解一些基礎知識,建立一些編程認知。
但是這樣的方式,還是難免會因為沒什麼基礎很快就覺得枯燥了,所以在書籍方面還是建議大家結合視頻課程一起來學習,才能更高效一點。
②網上找相關課程
在mooc網學習的是北京理工大學的一門python公開課,整個流程學習下來能夠了解一些基礎相關,但課程比較淺顯,還是感覺有些不系統,也很難靠自學迅速入門。
③報班學習
很多人對網上報班有些排斥,因為難免會覺得會被割韭菜。但是對於零基礎的小白學習python編程而言,跟著專業系統化一點的團隊一起學習,勢必會更省時省力一點的。
畢竟我們沒有基礎,靠自學又沒啥時間去堅持,能有合適的【線上陪伴式】的課程,還是挺值得一試的。建議大家可以先從體驗課開始,了解清楚課程含金量,看看往期學員的體驗回饋後再報班學習。
Python的學習學習順序如下:
①Python軟體開發基礎
②Python軟體開發進階
③Python全棧式WEB工程師
④Python多領域開發
互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。
想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。
祝你學有所成,望採納。
㈥ Python數據分析庫有哪些
Python數據分析必備的第三方庫:
1、Pandas
Pandas是Python強大、靈活的數據分析和探索工具,包含Serise、DataFrame等高級數據結構和工具,安裝Pandas可使Python中處理數據非常快速和簡單。
Pandas是Python的一個數據分析包,Pandas最初使用用作金融數據分析工具而開發出來,因此Pandas為時間序列分析提供了很好的支持。
Pandas是為了解決數據分析任務而創建的,Pandas納入了大量的庫和一些標準的數據模型,提供了高效的操作大型數據集所需要的工具。Pandas提供了大量是我們快速便捷的處理數據的函數和方法。Pandas包含了高級數據結構,以及讓數據分析變得快速、簡單的工具。
2、Numpy
Numpy可以提供數組支持以及相應的高效處理函數,是Python數據分析的基礎,也是Scipy、Pandas等數據處理和科學計算庫最基本的函數功能庫,且其數據類型對Python數據分析十分有用。
Numpy提供了兩種基本的對象:ndarray和ufunc。ndarray是存儲單一數據類型的多維數組,而ufunc是能夠對數組進行處理的函數。
3、Matplotlib
Matplotlib是強大的數據可視化工具和作圖庫,是主要用於繪制數據圖表的Python庫,提供了繪制各類可視化圖形的命令字型檔、簡單的介面,可以方便用戶輕松掌握圖形的格式,繪制各類可視化圖形。
Matplotlib是Python的一個可視化模塊,他能方便的只做線條圖、餅圖、柱狀圖以及其他專業圖形。
Matplotlib是基於Numpy的一套Python包,這個包提供了豐富的數據繪圖工具,主要用於繪制一些統計圖形。
4、SciPy
SciPy是一組專門解決科學計算中各種標准問題域的包的集合,包含的功能有最優化、線性代數、積分、插值、擬合、特殊函數、快速傅里葉變換、信號處理和圖像處理、常微分方程求解和其他科學與工程中常用的計算等,這些對數據分析和挖掘十分有用。
SciPy是一款方便、易於使用、專門為科學和工程設計的Python包,它包括統計、優化、整合、線性代數模塊、傅里葉變換、信號和圖像處理、常微分方程求解器等。Scipy依賴於Numpy,並提供許多對用戶友好的和有效的數值常式,如數值積分和優化。
5、Keras
Keras是深度學習庫,人工神經網路和深度學習模型,基於Theano之上,依賴於Numpy和Scipy,利用它可以搭建普通的神經網路和各種深度學習模型,如語言處理、圖像識別、自編碼器、循環神經網路、遞歸審計網路、卷積神經網路等。
6、Scrapy
Scrapy是專門為爬蟲而生的工具,具有URL讀取、HTML解析、存儲數據等功能,可以使用Twisted非同步網路庫來處理網路通訊,架構清晰,且包含了各種中間件介面,可以靈活的完成各種需求。
7、Gensim
Gensim是用來做文本主題模型的庫,常用於處理語言方面的任務,支持TF-IDF、LSA、LDA和Word2Vec在內的多種主題模型演算法,支持流式訓練,並提供了諸如相似度計算、信息檢索等一些常用任務的API介面。
㈦ Python中主要使用哪些資料庫
Python中常用的資料庫有很多,需要根據不同的業務和應用場景來選擇合適的資料庫,才能使程序更高效.
一般常用的主要有 MySQL, Redis, MangoDB 等資料庫
學習這些資料庫,可以看黑馬程序員視頻庫的學習視頻,有代碼、有資料,有PPT,不了解還可以問老師!
㈧ Python就業方向有哪些呀適合小白學習嗎
1、Web開發
目前豆瓣、知乎、拉勾網等都是用的Python做開發,由此可見Web開發在國內的發展還是很不錯的。
因為Python的web開發框架是最大的一個優勢,如果你用Python搭建一個網站,只需要幾行的代碼,可謂是十分簡潔。
2、網路爬蟲
現在學習Python的人員中,大部分都是在學習爬蟲,這也是Python的一大優勢之一,最早用Python做網路爬蟲的就是谷歌。
3、人工智慧
發展潛力和Money不用多說,這都是大家所知道的,但目前的話,人工智慧方面的工作還是比較少的,而且都是高學歷人士,以後的話肯定是最具有發展潛力的方向了。
4、伺服器運維
運維也不陌生,最開始一批學習Python的人,就是運維和測試的在職人員,因為Python對於他們的工作起到很大的作用,因為使用Python腳本進行批量化的文件部署和運行調整都成了Linux伺服器上很不錯的選擇。
5、數據分析
Python所擁有的完整的生態環境十分有利於進行數據分析處理,比如,"大數據"分析所需要的分布式計算、數據可視化、資料庫操作等,都可以通過Python中的十分成熟的模塊完成。
想了解更多Python相關,可轉:
㈨ python常用到哪些庫
Python作為一個設計優秀的程序語言,現在已廣泛應用於各種領域,依靠其強大的第三方類庫,Python在各個領域都能發揮巨大的作用。
下面我們就來看一下python中常用到的庫:
數值計算庫:
1. NumPy
支持多維數組與矩陣運算,也針對數組運算提供大量的數學函數庫。通常與SciPy和Matplotlib一起使用,支持比Python更多種類的數值類型,其中定義的最重要的對象是稱為ndarray的n維數組類型,用於描述相同類型的元素集合,可以使用基於0的索引訪問集合中元素。
2. SciPy
在NumPy庫的基礎上增加了眾多的數學、科學及工程計算中常用的庫函數,如線性代數、常微分方程數值求解、信號處理、圖像處理、稀疏矩陣等,可進行插值處理、信號濾波,以及使用C語言加速計算。
3. Pandas
基於NumPy的一種工具,為解決數據分析任務而生。納入大量庫和一些標準的數據模型,提供高效地操作大型數據集所需的工具及大量的能快速便捷處理數據的函數和方法,為時間序列分析提供很好的支持,提供多種數據結構,如Series、Time-Series、DataFrame和Panel。
數據可視化庫:
4. Matplotlib
第一個Python可視化庫,有許多別的程序庫都是建立在其基礎上或者直接調用該庫,可以很方便地得到數據的大致信息,功能非常強大,但也非常復雜。
5. Seaborn
利用了Matplotlib,用簡潔的代碼來製作好看的圖表。與Matplotlib最大的區別為默認繪圖風格和色彩搭配都具有現代美感。
6. ggplot
基於R的一個作圖庫ggplot2,同時利用了源於《圖像語法》(The Grammar of Graphics)中的概念,允許疊加不同的圖層來完成一幅圖,並不適用於製作非常個性化的圖像,為操作的簡潔度而犧牲了圖像的復雜度。
7. Bokeh
跟ggplot一樣,Bokeh也基於《圖形語法》的概念。與ggplot不同之處為它完全基於Python而不是從R處引用。長處在於能用於製作可交互、可直接用於網路的圖表。圖表可以輸出為JSON對象、HTML文檔或者可交互的網路應用。
8. Plotly
可以通過Python notebook使用,與Bokeh一樣致力於交互圖表的製作,但提供在別的庫中幾乎沒有的幾種圖表類型,如等值線圖、樹形圖和三維圖表。
9. pygal
與Bokeh和Plotly一樣,提供可直接嵌入網路瀏覽器的可交互圖像。與其他兩者的主要區別在於可將圖表輸出為SVG格式,所有的圖表都被封裝成方法,且默認的風格也很漂亮,用幾行代碼就可以很容易地製作出漂亮的圖表。
10. geoplotlib
用於製作地圖和地理相關數據的工具箱。可用來製作多種地圖,比如等值區域圖、熱度圖、點密度圖。必須安裝Pyglet(一個面向對象編程介面)方可使用。
11. missingno
用圖像的方式快速評估數據缺失的情況,可根據數據的完整度對數據進行排序或過濾,或者根據熱度圖或樹狀圖對數據進行修正。
web開發庫:
12. Django
一個高級的Python Web框架,支持快速開發,提供從模板引擎到ORM所需的一切東西,使用該庫構建App時,必須遵循Django的方式。
13. Socket
一個套接字通訊底層庫,用於在伺服器和客戶端間建立TCP或UDP連接,通過連接發送請求與響應。
14. Flask
一個基於Werkzeug、Jinja 2的Python輕量級框架(microframework),默認配備Jinja模板引擎,也包含其他模板引擎或ORM供選擇,適合用來編寫API服務(RESTful rervices)。
15. Twisted
一個使用Python實現的基於事件驅動的網路引擎框架,建立在deferred object之上,一個通過非同步架構實現的高性能的引擎,不適用於編寫常規的Web Apps,更適用於底層網路。
資料庫管理:
16. MySQL-python
又稱MySQLdb,是Python連接MySQL最流行的一個驅動,很多框架也基於此庫進行開發。只支持Python 2.x,且安裝時有許多前置條件。由於該庫基於C語言開發,在Windows平台上的安裝非常不友好,經常出現失敗的情況,現在基本不推薦使用,取代品為衍生版本。
17. mysqlclient
完全兼容MySQLdb,同時支持Python 3.x,是Django ORM的依賴工具,可使用原生SQL來操作資料庫,安裝方式與MySQLdb一致。
18. PyMySQL
純Python實現的驅動,速度比MySQLdb慢,最大的特點為安裝方式簡潔,同時也兼容MySQL-python。
19. SQLAlchemy
一種既支持原生SQL,又支持ORM的工具。ORM是Python對象與資料庫關系表的一種映射關系,可有效提高寫代碼的速度,同時兼容多種資料庫系統,如SQLite、MySQL、PostgreSQL,代價為性能上的一些損失。
自動化運維:
20. jumpsever跳板機
一種由Python編寫的開源跳板機(堡壘機)系統,實現了跳板機的基本功能,包含認證、授權和審計,集成了Ansible、批量命令等。
支持WebTerminal Bootstrap編寫,界面美觀,自動收集硬體信息,支持錄像回放、命令搜索、實時監控、批量上傳下載等功能,基於SSH協議進行管理,客戶端無須安裝agent。主要用於解決可視化安全管理,因完全開源,容易再次開發。
21. Mage分布式監控系統
一種用Python開發的自動化監控系統,可監控常用系統服務、應用、網路設備,可在一台主機上監控多個不同服務,不同服務的監控間隔可以不同,同一個服務在不同主機上的監控間隔、報警閾值可以不同,並提供數據可視化界面。
22. Mage的CMDB
一種用Python開發的硬體管理系統,包含採集硬體數據、API、頁面管理3部分功能,主要用於自動化管理筆記本、路由器等常見設備的日常使用。由伺服器的客戶端採集硬體數據,將硬體信息發送至API,API負責將獲取的數據保存至資料庫中,後台管理程序負責對伺服器信息進行配置和展示。
23. 任務調度系統
一種由Python開發的任務調度系統,主要用於自動化地將一個服務進程分布到其他多個機器的多個進程中,一個服務進程可作為調度者依靠網路通信完成這一工作。
24. Python運維流程系統
一種使用Python語言編寫的調度和監控工作流的平台,內部用於創建、監控和調整數據管道。允許工作流開發人員輕松創建、維護和周期性地調度運行工作流,包括了如數據存儲、增長分析、Email發送、A/B測試等諸多跨多部門的用例。
GUI編程:
25. Tkinter
一個Python的標准GUI庫,可以快速地創建GUI應用程序,可以在大多數的UNIX平台下使用,同樣可以應用在Windows和Macintosh系統中,Tkinter 8.0的後續版本可以實現本地窗口風格,並良好地運行在絕大多數平台中。
26. wxPython
一款開源軟體跨平台GUI庫wxWidgets的Python封裝和Python模塊,是Python語言的一套優秀的GUI圖形庫,允許程序員很方便地創建完整的、功能健全的GUI用戶界面。
27. PyQt
一個創建GUI應用程序的工具庫,是Python編程語言和Qt的成功融合,可以運行在所有主要操作系統上,包括UNIX、Windows和Mac。PyQt採用雙許可證,開發人員可以選擇GPL和商業許可,從PyQt的版本4開始,GPL許可證可用於所有支持的平台。
28. PySide
一個跨平台的應用程式框架Qt的Python綁定版本,提供與PyQt類似的功能,並相容API,但與PyQt不同處為其使用LGPL授權。
更多Python知識請關注Python自學網。
㈩ Python五大應用領域是什麼
一、網路爬蟲
網路爬蟲是Python比較常用的一個場景,國際上,google在前期大量地運用Python言語作為網路爬蟲的根底,帶動了整個Python言語的運用發展。
二、數據處理
Python有很齊備的生態環境。"大數據"分析中涉及到的分布式核算、數據可視化、資料庫操作等,Python中都有成熟的模塊能夠挑選完結其功能。關於Hadoop-MapRece和Spark,都能夠直接運用Python完結核算邏輯,這不管關於數據科學家仍是關於數據工程師而言都是十分便當的。
三、web開發
Python的誕生前史比Web還要早,由於Python是一種解說型的腳本言語,開發效率高,所以十分適合用來做Web開發。
Django 是 Python 編程言語驅動的一個開源模型-視圖-控制器(MVC)風格的 Web 運用程序結構。運用 Django,咱們在幾分鍾之內就能夠創建高品質、易維護、資料庫驅動的運用程序。
四、數據分析
關於數據分析師來說,不只要自己理解數據背面的含義,而且還要給更直地展現數據的含義。
Scipy是一組專門解決科學核算中各種規范問題域的包的集合。Numpy是python科學核算的根底包。Pandas處理上千萬的數據是一揮而就的工作,同時隨後咱們也將看到它比SQL有更強的表達能力,能夠做很多復雜的操作,要寫的code也更少。
五、人工智慧
人工智慧是現在十分火的一個方向,AI熱潮讓Python言語的未來充滿了無限的潛力。現在釋放出來的幾個十分有影響力的AI結構,大多是Python的實現,為什麼呢?
在人工智慧大領域領域內的數據發掘、機器學習、神經網路、深度學習等方面都是主流的編程言語,得到廣泛的支持和運用。人工智慧的核心演算法大部分仍是依賴於C/C++的,由於是核算密集型,需求十分精細的優化,還需求GPU、專用硬體之類的介面,這些都只要C/C++能做到。
關於Python五大應用領域是什麼,環球青藤小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。