Ⅰ 關於python列表推導式和生成器推導式的問題。
#!usr/bin/python
#-*-coding:utf-8-*-
#python2.7
#列表推導式
even_numbers=[xforxinrange(100,200)ifsum(map(lambday:int(y)**3,str(x)))==x]
printeven_numbers
#生成器推導式
even_numbers=(xforxinrange(100,200)ifsum(map(lambday:int(y)**3,str(x)))==x)
printeven_numbers
printlist(even_numbers)
Ⅱ python生成器是怎麼使用的
生成器(generator)概念
生成器不會把結果保存在一個系列中,而是保存生成器的狀態,在每次進行迭代時返回一個值,直到遇到StopIteration異常結束。
生成器語法
生成器表達式: 通列表解析語法,只不過把列表解析的[]換成()
生成器表達式能做的事情列表解析基本都能處理,只不過在需要處理的序列比較大時,列表解析比較費內存。
Python
1
2
3
4
5
6
7
8
9
10
11
>>> gen = (x**2 for x in range(5))
>>> gen
<generator object <genexpr> at 0x0000000002FB7B40>
>>> for g in gen:
... print(g, end='-')
...
0-1-4-9-16-
>>> for x in [0,1,2,3,4,5]:
... print(x, end='-')
...
0-1-2-3-4-5-
生成器函數: 在函數中如果出現了yield關鍵字,那麼該函數就不再是普通函數,而是生成器函數。
但是生成器函數可以生產一個無線的序列,這樣列表根本沒有辦法進行處理。
yield 的作用就是把一個函數變成一個 generator,帶有 yield 的函數不再是一個普通函數,Python 解釋器會將其視為一個 generator。
下面為一個可以無窮生產奇數的生成器函數。
Python
1
2
3
4
5
6
7
8
9
10
11
def odd():
n=1
while True:
yield n
n+=2
odd_num = odd()
count = 0
for o in odd_num:
if count >=5: break
print(o)
count +=1
當然通過手動編寫迭代器可以實現類似的效果,只不過生成器更加直觀易懂
Python
1
2
3
4
5
6
7
8
9
10
11
class Iter:
def __init__(self):
self.start=-1
def __iter__(self):
return self
def __next__(self):
self.start +=2
return self.start
I = Iter()
for count in range(5):
print(next(I))
題外話: 生成器是包含有__iter()和next__()方法的,所以可以直接使用for來迭代,而沒有包含StopIteration的自編Iter來只能通過手動循環來迭代。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
>>> from collections import Iterable
>>> from collections import Iterator
>>> isinstance(odd_num, Iterable)
True
>>> isinstance(odd_num, Iterator)
True
>>> iter(odd_num) is odd_num
True
>>> help(odd_num)
Help on generator object:
odd = class generator(object)
| Methods defined here:
|
| __iter__(self, /)
| Implement iter(self).
|
| __next__(self, /)
| Implement next(self).
......
看到上面的結果,現在你可以很有信心的按照Iterator的方式進行循環了吧!
在 for 循環執行時,每次循環都會執行 fab 函數內部的代碼,執行到 yield b 時,fab 函數就返回一個迭代值,下次迭代時,代碼從 yield b 的下一條語句繼續執行,而函數的本地變數看起來和上次中斷執行前是完全一樣的,於是函數繼續執行,直到再次遇到 yield。看起來就好像一個函數在正常執行的過程中被 yield 中斷了數次,每次中斷都會通過 yield 返回當前的迭代值。
yield 與 return
在一個生成器中,如果沒有return,則默認執行到函數完畢時返回StopIteration;
Python
1
2
3
4
5
6
7
8
9
10
11
>>> def g1():
... yield 1
...
>>> g=g1()
>>> next(g) #第一次調用next(g)時,會在執行完yield語句後掛起,所以此時程序並沒有執行結束。
1
>>> next(g) #程序試圖從yield語句的下一條語句開始執行,發現已經到了結尾,所以拋出StopIteration異常。
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
StopIteration
>>>
如果遇到return,如果在執行過程中 return,則直接拋出 StopIteration 終止迭代。
Python
1
2
3
4
5
6
7
8
9
10
11
12
>>> def g2():
... yield 'a'
... return
... yield 'b'
...
>>> g=g2()
>>> next(g) #程序停留在執行完yield 'a'語句後的位置。
'a'
>>> next(g) #程序發現下一條語句是return,所以拋出StopIteration異常,這樣yield 'b'語句永遠也不會執行。
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
StopIteration
如果在return後返回一個值,那麼這個值為StopIteration異常的說明,不是程序的返回值。
生成器沒有辦法使用return來返回值。
Python
1
2
3
4
5
6
7
8
9
10
11
>>> def g3():
... yield 'hello'
... return 'world'
...
>>> g=g3()
>>> next(g)
'hello'
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
StopIteration: world
生成器支持的方法
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> help(odd_num)
Help on generator object:
odd = class generator(object)
| Methods defined here:
......
| close(...)
| close() -> raise GeneratorExit inside generator.
|
| send(...)
| send(arg) -> send 'arg' into generator,
| return next yielded value or raise StopIteration.
|
| throw(...)
| throw(typ[,val[,tb]]) -> raise exception in generator,
| return next yielded value or raise StopIteration.
......
close()
手動關閉生成器函數,後面的調用會直接返回StopIteration異常。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
>>> def g4():
... yield 1
... yield 2
... yield 3
...
>>> g=g4()
>>> next(g)
1
>>> g.close()
>>> next(g) #關閉後,yield 2和yield 3語句將不再起作用
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
StopIteration
send()
生成器函數最大的特點是可以接受外部傳入的一個變數,並根據變數內容計算結果後返回。
這是生成器函數最難理解的地方,也是最重要的地方,實現後面我會講到的協程就全靠它了。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
def gen():
value=0
while True:
receive=yield value
if receive=='e':
break
value = 'got: %s' % receive
g=gen()
print(g.send(None))
print(g.send('aaa'))
print(g.send(3))
print(g.send('e'))
執行流程:
通過g.send(None)或者next(g)可以啟動生成器函數,並執行到第一個yield語句結束的位置。此時,執行完了yield語句,但是沒有給receive賦值。yield value會輸出初始值0注意:在啟動生成器函數時只能send(None),如果試圖輸入其它的值都會得到錯誤提示信息。
通過g.send(『aaa』),會傳入aaa,並賦值給receive,然後計算出value的值,並回到while頭部,執行yield value語句有停止。此時yield value會輸出」got: aaa」,然後掛起。
通過g.send(3),會重復第2步,最後輸出結果為」got: 3″
當我們g.send(『e』)時,程序會執行break然後推出循環,最後整個函數執行完畢,所以會得到StopIteration異常。
最後的執行結果如下:
Python
1
2
3
4
5
6
7
0
got: aaa
got: 3
Traceback (most recent call last):
File "h.py", line 14, in <mole>
print(g.send('e'))
StopIteration
throw()
用來向生成器函數送入一個異常,可以結束系統定義的異常,或者自定義的異常。
throw()後直接跑出異常並結束程序,或者消耗掉一個yield,或者在沒有下一個yield的時候直接進行到程序的結尾。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def gen():
while True:
try:
yield 'normal value'
yield 'normal value 2'
print('here')
except ValueError:
print('we got ValueError here')
except TypeError:
break
g=gen()
print(next(g))
print(g.throw(ValueError))
print(next(g))
print(g.throw(TypeError))
輸出結果為:
Python
1
2
3
4
5
6
7
8
normal value
we got ValueError here
normal value
normal value 2
Traceback (most recent call last):
File "h.py", line 15, in <mole>
print(g.throw(TypeError))
StopIteration
解釋:
print(next(g)):會輸出normal value,並停留在yield 『normal value 2』之前。
由於執行了g.throw(ValueError),所以會跳過所有後續的try語句,也就是說yield 『normal value 2』不會被執行,然後進入到except語句,列印出we got ValueError here。然後再次進入到while語句部分,消耗一個yield,所以會輸出normal value。
print(next(g)),會執行yield 『normal value 2』語句,並停留在執行完該語句後的位置。
g.throw(TypeError):會跳出try語句,從而print(『here』)不會被執行,然後執行break語句,跳出while循環,然後到達程序結尾,所以跑出StopIteration異常。
下面給出一個綜合例子,用來把一個多維列表展開,或者說扁平化多維列表)
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def flatten(nested):
try:
#如果是字元串,那麼手動拋出TypeError。
if isinstance(nested, str):
raise TypeError
for sublist in nested:
#yield flatten(sublist)
for element in flatten(sublist):
#yield element
print('got:', element)
except TypeError:
#print('here')
yield nested
L=['aaadf',[1,2,3],2,4,[5,[6,[8,[9]],'ddf'],7]]
for num in flatten(L):
print(num)
如果理解起來有點困難,那麼把print語句的注釋打開在進行查看就比較明了了。
總結
按照鴨子模型理論,生成器就是一種迭代器,可以使用for進行迭代。
第一次執行next(generator)時,會執行完yield語句後程序進行掛起,所有的參數和狀態會進行保存。再一次執行next(generator)時,會從掛起的狀態開始往後執行。在遇到程序的結尾或者遇到StopIteration時,循環結束。
可以通過generator.send(arg)來傳入參數,這是協程模型。
可以通過generator.throw(exception)來傳入一個異常。throw語句會消耗掉一個yield。可以通過generator.close()來手動關閉生成器。
next()等價於send(None)
Ⅲ python什麼是列表解析,生成器
>>> L= [(x+1,y+1) for x in range(3) for y in range(5)]
>>> L [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5)]
>>> N=[x+10 for x in range(10) if x>5]
>>> N [16, 17, 18, 19]
列表解析,返回的是一個列表list,列表解析是用中括弧括起來的[]
>>> L= (i + 1 for i in range(10) if i % 2)
>>> L
<generator object <genexpr> at 0xb749a52c>
>>> L1=[]
>>> for i in L:
... L1.append(i)
...
>>> L1
[2, 4, 6, 8, 10]
生成器與列表解析語法相同,唯一的區別是用小括弧括起來的(),它返回的是一個生成器對象,而不直接把結果輸出出來,它在內部實現是通過「延遲求值」實現的
Ⅳ python中,怎樣對二維list使用生成器
Python中創建二維列表/數組,即創建一個list,並且這個list的元素還是list。
可以用列表解析的方法實現。
Ⅳ Python創建生成器的兩種方法
創建生成器方法
方法一
要創建一個生成器,有很多種方法。第一種方法很簡單,只要把一個列表生成式的[ ]改成( )
創建L和G的區別僅在於最外層的[ ]和( ),L是一個列表,而G是一個生成器。我們可以直接列印出L的每一個元素,但我們怎麼列印出G的每一個元素呢?如果要一個一個列印出來,可以通過next()函數獲得生成器的下一個返回值:
運行結果:
運行結果:
生成器保存的是演算法,每次調用next(G),就計算出G的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,拋出StopIteration的異常。當然,這種不斷調用next()實在是太變態了,正確的方法是使用for循環,因為生成器也是可迭代對象。所以,我們創建了一個生成器後,基本上永遠不會調用next(),而是通過for循環來迭代它,並且不需要關心StopIteration異常。
相關推薦:《Python視頻教程》
方法2
generator非常強大。如果推算的演算法比較復雜,用類似列表生成式的for循環無法實現的時候,還可以用函數來實現。
比如,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契數列用列表生成式寫不出來,但是,用函數把它列印出來卻很容易:
運行結果:
仔細觀察,可以看出,fib函數實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出後續任意的元素,這種邏輯其實非常類似generator。
也就是說,上面的函數和generator僅一步之遙。要把fib函數變成generator,只需要把print(b)改為yield b就可以了:
運行結果:
在上面fib的例子,我們在循環過程中不斷調用yield,就會不斷中斷。當然要給循環設置一個條件來退出循環,不然就會產生一個無限數列出來。同樣的,把函數改成generator後,我們基本上從來不會用next()來獲取下一個返回值,而是直接使用for循環來迭代:
運行結果:
但是用for循環調用generator時,發現拿不到generator的return語句的返回值。如果想要拿到返回值,必須捕獲StopIteration錯誤,返回值包含在StopIteration的value中:
運行結果:
相關推薦:
三分鍾看懂什麼是Python生成器
Ⅵ 關於python列表生成的一個問題
python的列表生成式
一、r的防止字元轉義
print r"a\nb"
運行結果:
a\nb
二、獲取變數類型
a = r"a\nb"
print type(a)
運行結果:
<type 'str'>
三、判斷類型
a = r"a\nb"
print isinstance(a,str)
運行結果:
True
四、對list、tuple、dict、set進行迭代
4.1常用的方式
list = ['a','b','c']
for i in list:
print i
dict = {"k1":"v1","k2":"v2"}
for k,v in dict.items():
print k,v
但是這種迭代方式會把list裝到內存中進行迭代
4.2使用迭代器來迭代
list = ['a','b','c']
for i in iter(list):
print i
dict = {"k1":"v1","k2":"v2"}
for k,v in dict.iteritems():
print k,v
dict = {"k1":"v1","k2":"v2"}
for k in dict.iterkeys():
print k
這種方式的迭代比較省內存
4.3迭代值的同時迭代下標
list = ['a','b','c']
for index,value in enumerate(list):
print index,value
五、列表生成式
根據集合生成列表
list1 = ['a','b','c']
list2 = [1,2]
print [x*y for x in list1 for y in list2 if y>1 and y<3]
運行結果是:
['aa', 'bb', 'cc']
六、列表生成器
通過列表生成式,我們可以直接創建一個列表。但是,受到內存限制,列表容量肯定是有限的。而且,創建一個包含100萬個元素的列表,不僅佔用很大的存儲空間,如果我們僅僅需要訪問前面幾個元素,那後面絕大多數元素佔用的空間都白白浪費了。
所以,如果列表元素可以按照某種演算法推算出來,那我們是否可以在循環的過程中不斷推算出後續的元素呢?這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器:generator。
只要把一個列表生成式的[]改成(),就創建了一個generator:
g = (x * x for x in range(10))
generator保存的是演算法,每次調用next(g),就計算出g的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,拋出StopIteration的錯誤。
但是我們一般通過for循環來迭代它,並且不需要關心StopIteration的錯誤。
for n in g:
print(n)
Ⅶ python編寫中為什麼要使用生成器表達式
就像生成器函數,生成器表達式是一種對內存空間的優化:它們不需要像方括弧的列表推導一樣,一次構造出整個結果列表。與生成器函數一樣,它們將生成結果的過程拆分成更小的時間片:它們會一部分一部分地產生結果,而不是讓調用者在一次調用中等待整個集合被創建出來。
另一方面,生成器表達式在實際中運行起來可能比列表推導稍慢一些,所以它們可能只對那些結果集合非常大的運算或者不能等待全部數據產生的應用來說是最優選擇。
Ⅷ 如何更好地理解Python迭代器和生成器
在Python這門語言中,生成器毫無疑問是最有用的特性之一。與此同時,也是使用的最不廣泛的Python特性之一。究其原因,主要是因為,在其他主流語言裡面沒有生成器的概念。正是由於生成器是一個「新」的東西,所以,它一方面沒有引起廣大工程師的重視,另一方面,也增加了工程師的學習成本,最終導致大家錯過了Python中如此有用的一個特性。
我的這篇文章,希望通過簡單易懂的方式,深入淺出地介紹Python的生成器,以改變「如此有用的特性卻使用極不廣泛」的現象。本文的組織如下:在第1章,我們簡單地介紹了Python中的迭代器協議;在本文第2章,將會詳細介紹生成器的概念和語法;在第3章,將會給出一個有用的例子,說明使用生成器的好處;在本文最後,簡單的討論了使用生成器的注意事項。
1. 迭代器協議
由於生成器自動實現了迭代器協議,而迭代器協議對很多人來說,也是一個較為抽象的概念。所以,為了更好的理解生成器,我們需要簡單的回顧一下迭代器協議的概念。
迭代器協議是指:對象需要提供next方法,它要麼返回迭代中的下一項,要麼就引起一個StopIteration異常,以終止迭代
可迭代對象就是:實現了迭代器協議的對象
協議是一種約定,可迭代對象實現迭代器協議,Python的內置工具(如for循環,sum,min,max函數等)使用迭代器協議訪問對象。
舉個例子:在所有語言中,我們都可以使用for循環來遍歷數組,Python的list底層實現是一個數組,所以,我們可以使用for循環來遍歷list。如下所示:
>>> for n in [1, 2, 3, 4]:
... print n
但是,對Python稍微熟悉一點的朋友應該知道,Python的for循環不但可以用來遍歷list,還可以用來遍歷文件對象,如下所示:
>>> with open(『/etc/passwd』) as f: # 文件對象提供迭代器協議
... for line in f: # for循環使用迭代器協議訪問文件
... print line
...
為什麼在Python中,文件還可以使用for循環進行遍歷呢?這是因為,在Python中,文件對象實現了迭代器協議,for循環並不知道它遍歷的是一個文件對象,它只管使用迭代器協議訪問對象即可。正是由於Python的文件對象實現了迭代器協議,我們才得以使用如此方便的方式訪問文件,如下所示:
>>> f = open('/etc/passwd')
>>> dir(f)
['__class__', '__enter__', '__exit__', '__iter__', '__new__', 'writelines', '...'
2. 生成器
Python使用生成器對延遲操作提供了支持。所謂延遲操作,是指在需要的時候才產生結果,而不是立即產生結果。這也是生成器的主要好處。
Python有兩種不同的方式提供生成器:
生成器函數:常規函數定義,但是,使用yield語句而不是return語句返回結果。yield語句一次返回一個結果,在每個結果中間,掛起函數的狀態,以便下次重它離開的地方繼續執行
生成器表達式:類似於列表推導,但是,生成器返回按需產生結果的一個對象,而不是一次構建一個結果列表
2.1 生成器函數
我們來看一個例子,使用生成器返回自然數的平方(注意返回的是多個值):
def gensquares(N):
for i in range(N):
yield i ** 2
for item in gensquares(5):
print item,
使用普通函數:
def gensquares(N):
res = []
for i in range(N):
res.append(i*i)
return res
for item in gensquares(5):
print item,
可以看到,使用生成器函數代碼量更少。
2.2 生成器表達式
使用列表推導,將會一次產生所有結果:
>>> squares = [x**2 for x in range(5)]
>>> squares
[0, 1, 4, 9, 16]
將列表推導的中括弧,替換成圓括弧,就是一個生成器表達式:
>>> squares = (x**2 for x in range(5))
>>> squares
<generator object at 0x00B2EC88>
>>> next(squares)
0
>>> next(squares)
1
>>> next(squares)
4
>>> list(squares)
[9, 16]
Python不但使用迭代器協議,讓for循環變得更加通用。大部分內置函數,也是使用迭代器協議訪問對象的。例如, sum函數是Python的內置函數,該函數使用迭代器協議訪問對象,而生成器實現了迭代器協議,所以,我們可以直接這樣計算一系列值的和:
>>> sum(x ** 2 for x in xrange(4))
而不用多此一舉的先構造一個列表:
>>> sum([x ** 2 for x in xrange(4)])
2.3 再看生成器
前面已經對生成器有了感性的認識,我們以生成器函數為例,再來深入探討一下Python的生成器:
語法上和函數類似:生成器函數和常規函數幾乎是一樣的。它們都是使用def語句進行定義,差別在於,生成器使用yield語句返回一個值,而常規函數使用return語句返回一個值
自動實現迭代器協議:對於生成器,Python會自動實現迭代器協議,以便應用到迭代背景中(如for循環,sum函數)。由於生成器自動實現了迭代器協議,所以,我們可以調用它的next方法,並且,在沒有值可以返回的時候,生成器自動產生StopIteration異常
狀態掛起:生成器使用yield語句返回一個值。yield語句掛起該生成器函數的狀態,保留足夠的信息,以便之後從它離開的地方繼續執行
3. 示例
我們再來看兩個生成器的例子,以便大家更好的理解生成器的作用。
首先,生成器的好處是延遲計算,一次返回一個結果。也就是說,它不會一次生成所有的結果,這對於大數據量處理,將會非常有用。
大家可以在自己電腦上試試下面兩個表達式,並且觀察內存佔用情況。對於前一個表達式,我在自己的電腦上進行測試,還沒有看到最終結果電腦就已經卡死,對於後一個表達式,幾乎沒有什麼內存佔用。
sum([i for i in xrange(10000000000)])
sum(i for i in xrange(10000000000))
除了延遲計算,生成器還能有效提高代碼可讀性。例如,現在有一個需求,求一段文字中,每個單詞出現的位置。
不使用生成器的情況:
def index_words(text):
result = []
if text:
result.append(0)
for index, letter in enumerate(text, 1):
if letter == ' ':
result.append(index)
return result
使用生成器的情況:
def index_words(text):
if text:
yield 0
for index, letter in enumerate(text, 1):
if letter == ' ':
yield index
這里,至少有兩個充分的理由說明 ,使用生成器比不使用生成器代碼更加清晰:
使用生成器以後,代碼行數更少。大家要記住,如果想把代碼寫的Pythonic,在保證代碼可讀性的前提下,代碼行數越少越好
不使用生成器的時候,對於每次結果,我們首先看到的是result.append(index),其次,才是index。也就是說,我們每次看到的是一個列表的append操作,只是append的是我們想要的結果。使用生成器的時候,直接yield index,少了列表append操作的干擾,我們一眼就能夠看出,代碼是要返回index。
這個例子充分說明了,合理使用生成器,能夠有效提高代碼可讀性。只要大家完全接受了生成器的概念,理解了yield語句和return語句一樣,也是返回一個值。那麼,就能夠理解為什麼使用生成器比不使用生成器要好,能夠理解使用生成器真的可以讓代碼變得清晰易懂。
4. 使用生成器的注意事項
相信通過這篇文章,大家已經能夠理解生成器的作用和好處。但是,還沒有結束,使用生成器,也有一點注意事項。
我們直接來看例子,假設文件中保存了每個省份的人口總數,現在,需要求每個省份的人口佔全國總人口的比例。顯然,我們需要先求出全國的總人口,然後在遍歷每個省份的人口,用每個省的人口數除以總人口數,就得到了每個省份的人口佔全國人口的比例。
如下所示:
def get_province_population(filename):
with open(filename) as f:
for line in f:
yield int(line)
gen = get_province_population('data.txt')
all_population = sum(gen)
#print all_population
for population in gen:
print population / all_population
執行上面這段代碼,將不會有任何輸出,這是因為,生成器只能遍歷一次。在我們執行sum語句的時候,就遍歷了我們的生成器,當我們再次遍歷我們的生成器的時候,將不會有任何記錄。所以,上面的代碼不會有任何輸出。
因此,生成器的唯一注意事項就是:生成器只能遍歷一次。
5. 總結
本文深入淺出地介紹了Python中,一個容易被大家忽略的重要特性,即Python的生成器。為了講解生成器,本文先介紹了迭代器協議,然後介紹了生成器函數和生成器表達式,並通過示例演示了生成器的優點和注意事項。在實際工作中,充分利用Python生成器,不但能夠減少內存使用,還能夠提高代碼可讀性。掌握生成器也是Python高手的標配。希望本文能夠幫助大家理解Python的生成器。
Ⅸ Python列表生成器的循環技巧分享
Python列表生成器的循環技巧分享
這篇文章主要介紹了Python列表生成器的循環技巧分享,本文講解了列表生成器中一個循環和二個循環的不同寫法,需要的朋友可以參考下
列表生成式即List Comprehensions,是Python內置的非常簡單卻強大的可以用來創建list的生成式。
一個循環
在C語言等其他語言中,for循環一般是這樣的
如果python也這么寫,那麼真該看下python的基礎教程了~
但要注意的是,需要加一個[]來,否則會報錯...
在上面的例子中,不僅可以嵌套for,甚至可以嵌套if語句
再看看,原來是什麼樣子
兩個循環呢?
原來可能是這樣的?
現在可以這樣了!!!
Ⅹ 淺談Python中列表生成式和生成器的區別
列表生成式語法:
[x*x for x in range(0,10)] //列表生成式,這里是中括弧
//結果 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
(x*x for x in range(0,10)) //生成器, 這里是小括弧
//結果 <generator object <genexpr> at 0x7f0b072e6140>
二者的區別很明顯:
一個直接返回了表達式的結果列表, 而另一個是一個對象,該對象包含了對表達式結果的計算引用, 通過循環可以直接輸出
g = (x*x for x in range(0,10))
for n in g:
print n
結果
0
1
4
9
16
25
36
49
64
81
當表達式的結果數量較少的時候, 使用列表生成式還好, 一旦數量級過大, 那麼列表生成式就會佔用很大的內存,
而生成器並不是立即把結果寫入內存, 而是保存的一種計算方式, 通過不斷的獲取, 可以獲取到相應的位置的值,所以佔用的內存僅僅是對計算對象的保存