導航:首頁 > 編程語言 > n的遞歸演算法python

n的遞歸演算法python

發布時間:2022-10-01 21:06:31

Ⅰ 編寫一個採用遞歸演算法的程序,將輸入的任意一個正整數n以相反的順序輸出。例如:輸入12345則輸出54321

#include<iostream>
using namespace std;
void aa(int n)
{if(n>0&&n<10) return n;
else {cout<<n%10;aa(n/10);}
}
int main()
{int m;
cin>>m;
aa(m);
return 0;
}

Ⅱ 關於python遞歸函數怎樣理解

遞歸的思想主要是能夠重復某些動作,比如簡單的階乘,次方,回溯中的八皇後,數獨,還有漢諾塔,分形。
由於堆棧的機制,一般的遞歸可以保留某些變數在歷史狀態中,比如你提到的return x * power..., 但是某些或許龐大的問題或者是深度過大的問題就需要盡量避免遞歸,因為可能會棧溢出。還有一個問題是~python不支持尾遞歸優化!!!!所以~還是盡量避免遞歸的出現。
def power(x, n)
if n < 0:
return 1
return x * power(x, n - 1)

power(3, 3)
3 * power(3, 2)
3 * (3 * power(3, 1))
3 * (3 * (3 * power(3, 0)))
3 * (3 * (3 * 1)) 這里n = 0, return 1
3 * (3 * 3)
3 * 9
27
當函數形參n=0的時候,開始回退~直到第一次調用power結束。

Ⅲ python請用遞歸演算法編程解決漢諾塔問題 在線等

這是Python3系統自帶的一個例子,估計就是這個意思,本來他是6個盤子,按照你要求改成4個了。遞歸演算法沒問題,描述也非常詳細 ;)

#!/usr/bin/envpython3
fromturtleimport*
classDisc(Turtle):
def__init__(self,n):
Turtle.__init__(self,shape="square",visible=False)
self.pu()
self.shapesize(1.5,n*1.5,2)#square-->rectangle
self.fillcolor(n/6.,0,1-n/6.)
self.st()
classTower(list):
"Hanoitower,asubclassofbuilt-intypelist"
def__init__(self,x):
"createanemptytower.xisx-positionofpeg"
self.x=x
defpush(self,d):
d.setx(self.x)
d.sety(-150+34*len(self))
self.append(d)
defpop(self):
d=list.pop(self)
d.sety(150)
returnd
defhanoi(n,from_,with_,to_):
ifn>0:
hanoi(n-1,from_,to_,with_)
to_.push(from_.pop())
hanoi(n-1,with_,from_,to_)
defplay():
onkey(None,"space")
clear()
try:
hanoi(6,t1,t2,t3)
write("pressSTOPbuttontoexit",
align="center",font=("Courier",16,"bold"))
exceptTerminator:
pass#turtledemouserpressedSTOP
defmain():
globalt1,t2,t3
ht();penup();goto(0,-225)#writerturtle
t1=Tower(-250)
t2=Tower(0)
t3=Tower(250)
#maketowerof6discs
foriinrange(4,0,-1):
t1.push(Disc(i))
#preparespartanicuserinterface;-)
write("pressspacebartostartgame",
align="center",font=("Courier",16,"bold"))
onkey(play,"space")
listen()
return"EVENTLOOP"
if__name__=="__main__":
msg=main()
print(msg)
mainloop()

Ⅳ python遞歸演算法經典實例有哪些

程序調用自身的編程技巧稱為遞歸( recursion)。遞歸做為一種演算法在程序設計語言中廣泛應用。 一個過程或函數在其定義或說明中有直接或間接調用自身的一種方法。

它通常把一個大型復雜的問題層層轉化為一個與原問題相似的規模較小的問題來求解,遞歸策略只需少量的程序就可描述出解題過程所需要的多次重復計算,大大地減少了程序的代碼量。

遞歸的能力在於用有限的語句來定義對象的無限集合。一般來說,遞歸需要有邊界條件、遞歸前進段和遞歸返回段。當邊界條件不滿足時,遞歸前進;當邊界條件滿足時,遞歸返回。

Python

是完全面向對象的語言。函數、模塊、數字、字元串都是對象。並且完全支持繼承、重載、派生、多繼承,有益於增強源代碼的復用性。Python支持重載運算符和動態類型。相對於Lisp這種傳統的函數式編程語言,Python對函數式設計只提供了有限的支持。有兩個標准庫(functools, itertools)提供了Haskell和Standard ML中久經考驗的函數式程序設計工具。

Ⅳ 遞歸求斐波那契數列前n項python

def fib_th(n):
"""輸出第N個斐波那契數列值"""
a, b = 0, 1
t = 2
if isinstance(n, int):
# n = int(n)
assert n >= 1, "序號值必須大於0"
if n == 1:
return a
while t < n:
a, b = b, a + b
t += 1
else:
return b
else:
return "There is not a Number input,please try again."

if __name__ == "__main__":
fib_list = []
for i in range(1, 11):
fib_list.append(fib_th(i))
print(fib_list)

Ⅵ python用遞歸方法求n!

python使用遞歸求方法求解n的階乘
n = int(input("請輸入一個數字:\n"))
def demo(n):
sum = 0
if n == 0:
sum = 1
else:
sum = n * demo(n - 1)
return sum

print("%d 的階乘為 %d"%(n,demo(n)))

Ⅶ 如何使用Python的遞歸方法來實現組合數

defC(n,m):
ifm>n:
return0
elifm==1:
returnn
elifn==1:
return1
else:
returnC(n-1,m-1)+C(n-1,m)


print(C(5,1))#5
print(C(5,2))#10
print(C(5,3))#10
print(C(5,4))#5
print(C(5,5))#1

Ⅷ python中n的階乘的演算法

我的代碼是
#encoding=utf-8

s=1
n=int(input("請輸入一個整數n:"))
for i in range(1,n+1):
s=s*i
print(n,"!=",s)
結果:
python3 a.py
請輸入一個整數n:5
5 != 120

Ⅸ 面試必會八大排序演算法(Python)

一、插入排序

介紹

插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據。

演算法適用於少量數據的排序,時間復雜度為O(n^2)。

插入排演算法是穩定的排序方法。

步驟

①從第一個元素開始,該元素可以認為已經被排序

②取出下一個元素,在已經排序的元素序列中從後向前掃描

③如果該元素(已排序)大於新元素,將該元素移到下一位置

④重復步驟3,直到找到已排序的元素小於或者等於新元素的位置

⑤將新元素插入到該位置中

⑥重復步驟2

排序演示

演算法實現

二、冒泡排序

介紹

冒泡排序(Bubble Sort)是一種簡單的排序演算法,時間復雜度為O(n^2)。

它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。

這個演算法的名字由來是因為越小的元素會經由交換慢慢「浮」到數列的頂端。

原理

循環遍歷列表,每次循環找出循環最大的元素排在後面;

需要使用嵌套循環實現:外層循環控制總循環次數,內層循環負責每輪的循環比較。

步驟

①比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。

②對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。在這一點,最後的元素應該會是最大的數。

③針對所有的元素重復以上的步驟,除了最後一個。

④持續每次對越來越少的元素重復上面的步驟,直到沒有任何一對數字需要比較。

演算法實現:

三、快速排序

介紹

快速排序(Quicksort)是對冒泡排序的一種改進,借用了分治的思想,由C. A. R. Hoare在1962年提出。

基本思想

快速排序的基本思想是:挖坑填數 + 分治法。

首先選出一個軸值(pivot,也有叫基準的),通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。

實現步驟

①從數列中挑出一個元素,稱為 「基準」(pivot);

②重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊);

③對所有兩個小數列重復第二步,直至各區間只有一個數。

排序演示

演算法實現

四、希爾排序

介紹

希爾排序(Shell Sort)是插入排序的一種,也是縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法,時間復雜度為:O(1.3n)。

希爾排序是基於插入排序的以下兩點性質而提出改進方法的:

·插入排序在對幾乎已經排好序的數據操作時, 效率高, 即可以達到線性排序的效率;

·但插入排序一般來說是低效的, 因為插入排序每次只能將數據移動一位。

基本思想

①希爾排序是把記錄按下標的一定量分組,對每組使用直接插入演算法排序;

②隨著增量逐漸減少,每組包1含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法被終止。

排序演示

演算法實現

五、選擇排序

介紹

選擇排序(Selection sort)是一種簡單直觀的排序演算法,時間復雜度為Ο(n2)。

基本思想

選擇排序的基本思想:比較 + 交換。

第一趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;

第二趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;

以此類推,第 i 趟,在待排序記錄ri ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。

排序演示

選擇排序的示例動畫。紅色表示當前最小值,黃色表示已排序序列,藍色表示當前位置。

演算法實現

六、堆排序

介紹

堆排序(Heapsort)是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。

利用數組的特點快速指定索引的元素。

基本思想

堆分為大根堆和小根堆,是完全二叉樹。

大根堆的要求是每個節點的值不大於其父節點的值,即A[PARENT[i]] >=A[i]。

在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。

排序演示

演算法實現

七、歸並排序

介紹

歸並排序(Merge sort)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

基本思想

歸並排序演算法是將兩個(或兩個以上)有序表合並成一個新的有序表,即把待排序序列分為若干個子序列,每個子序列是有序的。然後再把有序子序列合並為整體有序序列。

演算法思想

自上而下遞歸法(假如序列共有n個元素)

① 將序列每相鄰兩個數字進行歸並操作,形成 floor(n/2)個序列,排序後每個序列包含兩個元素;

② 將上述序列再次歸並,形成 floor(n/4)個序列,每個序列包含四個元素;

③ 重復步驟②,直到所有元素排序完畢。

自下而上迭代法

① 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列;

② 設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;

③ 比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置;

④ 重復步驟③直到某一指針達到序列尾;

⑤ 將另一序列剩下的所有元素直接復制到合並序列尾。

排序演示

演算法實現

八、基數排序

介紹

基數排序(Radix Sort)屬於「分配式排序」,又稱為「桶子法」。

基數排序法是屬於穩定性的排序,其時間復雜度為O (nlog(r)m) ,其中 r 為採取的基數,而m為堆數。

在某些時候,基數排序法的效率高於其他的穩定性排序法。

基本思想

將所有待比較數值(正整數)統一為同樣的數位長度,數位較短的數前面補零。然後,從最低位開始,依次進行一次排序。這樣從最低位排序一直到最高位排序完成以後,數列就變成一個有序序列。

基數排序按照優先從高位或低位來排序有兩種實現方案:

MSD(Most significant digital) 從最左側高位開始進行排序。先按k1排序分組, 同一組中記錄, 關鍵碼k1相等,再對各組按k2排序分成子組, 之後, 對後面的關鍵碼繼續這樣的排序分組, 直到按最次位關鍵碼kd對各子組排序後. 再將各組連接起來,便得到一個有序序列。MSD方式適用於位數多的序列。

LSD (Least significant digital)從最右側低位開始進行排序。先從kd開始排序,再對kd-1進行排序,依次重復,直到對k1排序後便得到一個有序序列。LSD方式適用於位數少的序列。

排序效果

演算法實現

九、總結

各種排序的穩定性、時間復雜度、空間復雜度的總結:

平方階O(n²)排序:各類簡單排序:直接插入、直接選擇和冒泡排序;

從時間復雜度來說:

線性對數階O(nlog₂n)排序:快速排序、堆排序和歸並排序;

O(n1+§))排序,§是介於0和1之間的常數:希爾排序 ;

線性階O(n)排序:基數排序,此外還有桶、箱排序。

Ⅹ python語言 用遞歸法求數組的最小值

#!/usr/bin/python
#encoding:utf-8

def_min(x,y):
returnxifx<yelsey

deflstmin(lst):
iflen(lst)==1:
returnlst[0]
else:
return_min(lst[0],lstmin(lst[1:]))

lst=[5,1,0,2,89]
themin=lstmin(lst)
printthemin

閱讀全文

與n的遞歸演算法python相關的資料

熱點內容
凈化車間門演算法 瀏覽:934
安卓怎麼搞jpg 瀏覽:544
如來佛祖命令雷神去下界 瀏覽:854
新電腦管家下載好怎麼解壓 瀏覽:528
php獲取介面數據 瀏覽:763
最後的命令 瀏覽:921
如何添加手機app桌面快捷圖標 瀏覽:427
ui設計師與程序員 瀏覽:417
壽司pdf 瀏覽:828
pythonbg是什麼 瀏覽:248
c數值演算法程序大全 瀏覽:785
android整點報時 瀏覽:221
稀土pdf 瀏覽:536
單片機電子鎖 瀏覽:596
通達信機智資金流指標公式源碼 瀏覽:216
php安裝xsl擴展 瀏覽:842
python如何使用help 瀏覽:367
上汽榮威app在哪裡查詢 瀏覽:903
冰櫃壓縮機溫度108 瀏覽:720
阿里雲郵smtp伺服器地址 瀏覽:254