Ⅰ 二叉樹按照層序遍歷的方法是什麼
二叉樹按照層序遍歷,依次編號,按照編號的順序,存儲在連續存儲單元的方式就是二叉樹的順序存儲。
Ⅱ 二叉樹如何遍歷
二叉樹的遍歷,通常用遞歸的方法來描述。
先根遍歷或者先序遍歷:首先訪問根結點,然後訪問左子樹,最後訪問右子樹。
中根便利或者中序遍歷:先訪問左子樹,然後訪問根節點,最後訪問右子樹。
後根遍歷或者先後序遍歷:首先訪問左子樹,然後訪問根節點,最後訪問右子樹。
按層次遍歷:從最上面一層,也就是根節點所在的一層開始,從上往下從左到右,訪問二叉樹中的每一個節點。
Ⅲ 二叉樹的層次遍歷
二叉樹具有以下重要性質: 性質1 二叉樹第i層上的結點數目最多為2i-1(i≥1)。 證明:用數學歸納法證明: 歸納基礎:i=1時,有2i-1=20=1。因為第1層上只有一個根結點,所以命題成立。 歸納假設:假設對所有的j(1≤j<i)命題成立,即第j層上至多有2j-1個結點,證明j=i時命題亦成立。 歸納步驟:根據歸納假設,第i-1層上至多有2i-2個結點。由於二叉樹的每個結點至多有兩個孩子,故第i層上的結點數至多是第i-1層上的最大結點數的2倍。即j=i時,該層上至多有2×2i-2=2i-1個結點,故命題成立。 性質2 深度為k的二叉樹至多有2k-1個結點(k≥1)。 證明:在具有相同深度的二叉樹中,僅當每一層都含有最大結點數時,其樹中結點數最多。因此利用性質1可得,深度為k的二叉樹的結點數至多為: 20+21+…+2k-1=2k-1 故命題正確。 性質3 在任意-棵二叉樹中,若終端結點的個數為n0,度為2的結點數為n2,則no=n2+1。 證明:因為二叉樹中所有結點的度數均不大於2,所以結點總數(記為n)應等於0度結點數、1度結點(記為n1)和2度結點數之和: n=no+n1+n2 (式子1) 另一方面,1度結點有一個孩子,2度結點有兩個孩子,故二叉樹中孩子結點總數是: nl+2n2 樹中只有根結點不是任何結點的孩子,故二叉樹中的結點總數又可表示為: n=n1+2n2+1 (式子2) 由式子1和式子2得到: no=n2+1 滿二叉樹和完全二叉樹是二叉樹的兩種特殊情形。 1、滿二叉樹(FullBinaryTree) 一棵深度為k且有2k-1個結點的二又樹稱為滿二叉樹。 滿二叉樹的特點: (1) 每一層上的結點數都達到最大值。即對給定的高度,它是具有最多結點數的二叉樹。 (2) 滿二叉樹中不存在度數為1的結點,每個分支結點均有兩棵高度相同的子樹,且樹葉都在最下一層上。 【例】圖(a)是一個深度為4的滿二叉樹。 2、完全二叉樹(Complete BinaryTree) 若一棵二叉樹至多隻有最下面的兩層上結點的度數可以小於2,並且最下一層上的結點都集中在該層最左邊的若干位置上,則此二叉樹稱為完全二叉樹。 特點: (1) 滿二叉樹是完全二叉樹,完全二叉樹不一定是滿二叉樹。 (2) 在滿二叉樹的最下一層上,從最右邊開始連續刪去若干結點後得到的二叉樹仍然是一棵完全二叉樹。 (3) 在完全二叉樹中,若某個結點沒有左孩子,則它一定沒有右孩子,即該結點必是葉結點。 【例】如圖(c)中,結點F沒有左孩子而有右孩子L,故它不是一棵完全二叉樹。 【例】圖(b)是一棵完全二叉樹。 性質4 具有n個結點的完全二叉樹的深度為 證明:設所求完全二叉樹的深度為k。由完全二叉樹定義可得: 深度為k得完全二叉樹的前k-1層是深度為k-1的滿二叉樹,一共有2k-1-1個結點。 由於完全二叉樹深度為k,故第k層上還有若干個結點,因此該完全二叉樹的結點個數: n>2k-1-1。 另一方面,由性質2可得: n≤2k-1, 即:2k-1-l<n≤2k-1 由此可推出:2k-1≤n<2k,取對數後有: k-1≤lgn<k 又因k-1和k是相鄰的兩個整數,故有 , 由此即得: 注意: 的證明【參見參考書目】
Ⅳ 二叉樹的層次遍歷
設計一個演算法層序遍歷二叉樹(同一層從左到右訪問)。思想:用一個隊列保存被訪問的當前節點的左右孩子以實現層序遍歷。
void HierarchyBiTree(BiTree Root){
LinkQueue *Q; // 保存當前節點的左右孩子的隊列
InitQueue(Q); // 初始化隊列
if (Root == NULL) return ; //樹為空則返回
BiNode *p = Root; // 臨時保存樹根Root到指針p中
Visit(p->data); // 訪問根節點
if (p->lchild) EnQueue(Q, p->lchild); // 若存在左孩子,左孩子進隊列
if (p->rchild) EnQueue(Q, p->rchild); // 若存在右孩子,右孩子進隊列
while (!QueueEmpty(Q)) // 若隊列不空,則層序遍歷 { DeQueue(Q, p); // 出隊列
Visit(p->data);// 訪問當前節點
if (p->lchild) EnQueue(Q, p->lchild); // 若存在左孩子,左孩子進隊列
if (p->rchild) EnQueue(Q, p->rchild); // 若存在右孩子,右孩子進隊列
}
DestroyQueue(Q); // 釋放隊列空間
return ;
這個已經很詳細了!你一定可以看懂的!加油啊!
Ⅳ 用java怎麼構造一個二叉樹呢
二叉樹的相關操作,包括創建,中序、先序、後序(遞歸和非遞歸),其中重點的是java在先序創建二叉樹和後序非遞歸遍歷的的實現。
package com.algorithm.tree;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.concurrent.LinkedBlockingQueue;
public class Tree<T> {
private Node<T> root;
public Tree() {
}
public Tree(Node<T> root) {
this.root = root;
}
//創建二叉樹
public void buildTree() {
Scanner scn = null;
try {
scn = new Scanner(new File("input.txt"));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
root = createTree(root,scn);
}
//先序遍歷創建二叉樹
private Node<T> createTree(Node<T> node,Scanner scn) {
String temp = scn.next();
if (temp.trim().equals("#")) {
return null;
} else {
node = new Node<T>((T)temp);
node.setLeft(createTree(node.getLeft(), scn));
node.setRight(createTree(node.getRight(), scn));
return node;
}
}
//中序遍歷(遞歸)
public void inOrderTraverse() {
inOrderTraverse(root);
}
public void inOrderTraverse(Node<T> node) {
if (node != null) {
inOrderTraverse(node.getLeft());
System.out.println(node.getValue());
inOrderTraverse(node.getRight());
}
}
//中序遍歷(非遞歸)
public void nrInOrderTraverse() {
Stack<Node<T>> stack = new Stack<Node<T>>();
Node<T> node = root;
while (node != null || !stack.isEmpty()) {
while (node != null) {
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
System.out.println(node.getValue());
node = node.getRight();
}
}
//先序遍歷(遞歸)
public void preOrderTraverse() {
preOrderTraverse(root);
}
public void preOrderTraverse(Node<T> node) {
if (node != null) {
System.out.println(node.getValue());
preOrderTraverse(node.getLeft());
preOrderTraverse(node.getRight());
}
}
//先序遍歷(非遞歸)
public void nrPreOrderTraverse() {
Stack<Node<T>> stack = new Stack<Node<T>>();
Node<T> node = root;
while (node != null || !stack.isEmpty()) {
while (node != null) {
System.out.println(node.getValue());
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
node = node.getRight();
}
}
//後序遍歷(遞歸)
public void postOrderTraverse() {
postOrderTraverse(root);
}
public void postOrderTraverse(Node<T> node) {
if (node != null) {
postOrderTraverse(node.getLeft());
postOrderTraverse(node.getRight());
System.out.println(node.getValue());
}
}
//後續遍歷(非遞歸)
public void nrPostOrderTraverse() {
Stack<Node<T>> stack = new Stack<Node<T>>();
Node<T> node = root;
Node<T> preNode = null;//表示最近一次訪問的節點
while (node != null || !stack.isEmpty()) {
while (node != null) {
stack.push(node);
node = node.getLeft();
}
node = stack.peek();
if (node.getRight() == null || node.getRight() == preNode) {
System.out.println(node.getValue());
node = stack.pop();
preNode = node;
node = null;
} else {
node = node.getRight();
}
}
}
//按層次遍歷
public void levelTraverse() {
levelTraverse(root);
}
public void levelTraverse(Node<T> node) {
Queue<Node<T>> queue = new LinkedBlockingQueue<Node<T>>();
queue.add(node);
while (!queue.isEmpty()) {
Node<T> temp = queue.poll();
if (temp != null) {
System.out.println(temp.getValue());
queue.add(temp.getLeft());
queue.add(temp.getRight());
}
}
}
}
//樹的節點
class Node<T> {
private Node<T> left;
private Node<T> right;
private T value;
public Node() {
}
public Node(Node<T> left,Node<T> right,T value) {
this.left = left;
this.right = right;
this.value = value;
}
public Node(T value) {
this(null,null,value);
}
public Node<T> getLeft() {
return left;
}
public void setLeft(Node<T> left) {
this.left = left;
}
public Node<T> getRight() {
return right;
}
public void setRight(Node<T> right) {
this.right = right;
}
public T getValue() {
return value;
}
public void setValue(T value) {
this.value = value;
}
}
測試代碼:
package com.algorithm.tree;
public class TreeTest {
/**
* @param args
*/
public static void main(String[] args) {
Tree<Integer> tree = new Tree<Integer>();
tree.buildTree();
System.out.println("中序遍歷");
tree.inOrderTraverse();
tree.nrInOrderTraverse();
System.out.println("後續遍歷");
//tree.nrPostOrderTraverse();
tree.postOrderTraverse();
tree.nrPostOrderTraverse();
System.out.println("先序遍歷");
tree.preOrderTraverse();
tree.nrPreOrderTraverse();
//
}
}
Ⅵ 二叉樹的層次遍歷演算法
二叉樹的層次遍歷演算法有如下三種方法:
給定一棵二叉樹,要求進行分層遍歷,每層的節點值單獨列印一行,下圖給出事例結構:
之後大家就可以自己畫圖了,下面給出程序代碼:
[cpp] view plain
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
最後給出完成代碼的測試用例:124##57##8##3#6##
[cpp] view plain
#include<iostream>
#include<vector>
#include<deque>
using namespace std;
typedef struct tree_node_s {
char data;
struct tree_node_s *lchild;
struct tree_node_s *rchild;
}tree_node_t, *Tree;
void create_tree(Tree *T) {
char c = getchar();
if (c == '#') {
*T = NULL;
} else {
*T = (tree_node_t*)malloc(sizeof(tree_node_t));
(*T)->data = c;
create_tree(&(*T)->lchild);
create_tree(&(*T)->rchild);
}
}
void print_tree(Tree T) {
if (T) {
cout << T->data << " ";
print_tree(T->lchild);
print_tree(T->rchild);
}
}
int print_at_level(Tree T, int level) {
if (!T || level < 0)
return 0;
if (0 == level) {
cout << T->data << " ";
return 1;
}
return print_at_level(T->lchild, level - 1) + print_at_level(T->rchild, level - 1);
}
void print_by_level_1(Tree T) {
int i = 0;
for (i = 0; ; i++) {
if (!print_at_level(T, i))
break;
}
cout << endl;
}
void print_by_level_2(Tree T) {
deque<tree_node_t*> q_first, q_second;
q_first.push_back(T);
while(!q_first.empty()) {
while (!q_first.empty()) {
tree_node_t *temp = q_first.front();
q_first.pop_front();
cout << temp->data << " ";
if (temp->lchild)
q_second.push_back(temp->lchild);
if (temp->rchild)
q_second.push_back(temp->rchild);
}
cout << endl;
q_first.swap(q_second);
}
}
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
int main(int argc, char *argv[]) {
Tree T = NULL;
create_tree(&T);
print_tree(T);
cout << endl;
print_by_level_3(T);
cin.get();
cin.get();
return 0;
}
Ⅶ 什麼是樹的層次遍歷 要求通俗易懂
就是按層(深度)遍歷整棵樹。
如果層次遍歷這棵樹,得到的序列就是12345678,遍歷時因為要一層一層的下來,所以一般用廣度優先遍歷。
遍歷是對樹的一種最基本的運算,所謂遍歷二叉樹,就是按一定的規則和順序走遍二叉樹的所有結點,使每一個結點都被訪問一次,而且只被訪問一次。由於二叉樹是非線性結構,因此,樹的遍歷實質上是將二叉樹的各個結點轉換成為一個線性序列來表示。
設L、D、R分別表示遍歷左子樹、訪問根結點和遍歷右子樹, 則對一棵二叉樹的遍歷有三種情況:DLR(稱為先根次序遍歷),LDR(稱為中根次序遍歷),LRD (稱為後根次序遍歷)。
(7)java二叉樹的層次遍歷擴展閱讀:
二叉樹是一個連通的無環圖,並且每一個頂點的度不大於3。有根二叉樹還要滿足根結點的度不大於2。有了根結點之後,每個頂點定義了唯一的父結點,和最多2個子結點。然而,沒有足夠的信息來區分左結點和右結點。如果不考慮連通性,允許圖中有多個連通分量。
給定N個節點,能構成h(N)種不同的二叉樹。h(N)為卡特蘭數的第N項。h(n)=C(2*n,n)/(n+1)。
設有i個枝點,I為所有枝點的道路長度總和,J為葉的道路長度總和J=I+2i。
Ⅷ java 遞歸 算 二叉樹 層級
層次遍歷從方法上不具有遞歸的形式,所以一般不用遞歸實現。當然了,非要寫成遞歸肯定也是可以的,大致方法如下。 void LevelOrder(BTree T, int cnt) { BTree level = malloc(sizeof(struct BTNode)*cnt); if(level==NULL) return; int i=0,rear=0; if(cnt==0) return; for(i=0; i<cnt; i++){ printf("%c ",T[i].data); if(T[i].lchild) level[rear++]=*T[i].lchild; if(T[i].rchild) level[rear++]=*T[i].rchild; } printf("\n"); LevelOrder(level, rear); free(level); } 補充一下,在main裡面調用的時候就得用LevelOrder(T,1)了。
Ⅸ 遍歷二叉樹
遍歷方案:
1.遍歷方案
從二叉樹的遞歸定義可知,一棵非空的二叉樹由根結點及左、右子樹這三個基本部分組成。因此,在任一給定結點上,可以按某種次序執行三個操作:
(1)訪問結點本身(N),
(2)遍歷該結點的左子樹(L),
(3)遍歷該結點的右子樹(R)。
以上三種操作有六種執行次序:
NLR、LNR、LRN、NRL、RNL、RLN。
注意:
前三種次序與後三種次序對稱,故只討論先左後右的前三種次序。
2.三種遍歷的命名
根據訪問結點操作發生位置命名:
① NLR:前序遍歷(PreorderTraversal亦稱(先序遍歷))
——訪問結點的操作發生在遍歷其左右子樹之前。
② LNR:中序遍歷(InorderTraversal)
——訪問結點的操作發生在遍歷其左右子樹之中(間)。
③ LRN:後序遍歷(PostorderTraversal)
——訪問結點的操作發生在遍歷其左右子樹之後。
注意:
由於被訪問的結點必是某子樹的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解釋為根、根的左子樹和根的右子樹。NLR、LNR和LRN分別又稱為先根遍歷、中根遍歷和後根遍歷。
遍歷演算法
1.中序遍歷的遞歸演算法定義:
若二叉樹非空,則依次執行如下操作:
(1)遍歷左子樹;
(2)訪問根結點;
(3)遍歷右子樹。
2.先序遍歷的遞歸演算法定義:
若二叉樹非空,則依次執行如下操作:
(1) 訪問根結點;
(2) 遍歷左子樹;
(3) 遍歷右子樹。
3.後序遍歷得遞歸演算法定義:
若二叉樹非空,則依次執行如下操作:
(1)遍歷左子樹;
(2)遍歷右子樹;
(3)訪問根結點。
4.中序遍歷的演算法實現
用二叉鏈表做為存儲結構,中序遍歷演算法可描述為:
void InOrder(BinTree T)
{ //演算法里①~⑥是為了說明執行過程加入的標號
① if(T) { // 如果二叉樹非空
② InOrder(T->lchild);
③ printf("%c",T->data); // 訪問結點
④ InOrder(T->rchild);
⑤ }
⑥ } // InOrder
遍歷序列
1.遍歷二叉樹的執行蹤跡
三種遞歸遍歷演算法的搜索路線相同(如下圖虛線所示)。
具體線路為:
從根結點出發,逆時針沿著二叉樹外緣移動,對每個結點均途徑三次,最後回到根結點。
2.遍歷序列
A
/ \
B C
/ / \
D E F
圖
(1) 中序序列(inorder traversal)
中序遍歷二叉樹時,對結點的訪問次序為中序序列
【例】中序遍歷上圖所示的二叉樹時,得到的中序序列為:
D B A E C F
(2) 先序序列(preorder traversal)
先序遍歷二叉樹時,對結點的訪問次序為先序序列
【例】先序遍歷上圖所示的二叉樹時,得到的先序序列為:
A B D C E F
(3) 後序序列(postorder traversal)
後序遍歷二叉樹時,對結點的訪問次序為後序序列
【例】後序遍歷上圖所示的二叉樹時,得到的後序序列為:
D B E F C A
(4)層次遍歷(level traversal)二叉樹的操作定義為:若二叉樹為空,則退出,否則,按照樹的結構,從根開始自上而下,自左而右訪問每一個結點,從而實現對每一個結點的遍歷
注意:
(1)在搜索路線中,若訪問結點均是第一次經過結點時進行的,則是前序遍歷;若訪問結點均是在第二次(或第三次)經過結點時進行的,則是中序遍歷(或後序遍歷)。只要將搜索路線上所有在第一次、第二次和第三次經過的結點分別列表,即可分別得到該二叉樹的前序序列、中序序列和後序序列。
(2)上述三種序列都是線性序列,有且僅有一個開始結點和一個終端結點,其餘結點都有且僅有一個前趨結點和一個後繼結點。為了區別於樹形結構中前趨(即雙親)結點和後繼(即孩子)結點的概念,對上述三種線性序列,要在某結點的前趨和後繼之前冠以其遍歷次序名稱。
【例】上圖所示的二叉樹中結點C,其前序前趨結點是D,前序後繼結點是E;中序前趨結點是E,中序後繼結點是F;後序前趨結點是F,後序後繼結點是A。但是就該樹的邏輯結構而言,C的前趨結點是A,後繼結點是E和F。
二叉鏈表的構造
1. 基本思想
基於先序遍歷的構造,即以二叉樹的先序序列為輸入構造。
注意:
先序序列中必須加入虛結點以示空指針的位置。
【例】
建立上圖所示二叉樹,其輸入的先序序列是:ABD∮∮∮CE∮∮F∮∮。
2. 構造演算法
假設虛結點輸入時以空格字元表示,相應的構造演算法為:
void CreateBinTree (BinTree *T)
{ //構造二叉鏈表。T是指向根指針的指針,故修改*T就修改了實參(根指針)本身
char ch;
if((ch=getchar())=='') *T=NULL; //讀人空格,將相應指針置空
else{ //讀人非空格
*T=(BinTNode *)malloc(sizeof(BinTNode)); //生成結點
(*T)->data=ch;
CreateBinTree(&(*T)->lchild); //構造左子樹
CreateBinTree(&(*T)->rchild); //構造右子樹
}
}
注意:
調用該演算法時,應將待建立的二叉鏈表的根指針的地址作為實參。
【例】
設root是一根指針(即它的類型是BinTree),則調用CreateBinTree(&root)後root就指向了已構造好的二叉鏈表的根結點。
二叉樹建立過程見http://student.zjzk.cn/course_ware/data_structure/web/flashhtml/erchashujianli.htm
下面是關於二叉樹的遍歷、查找、刪除、更新數據的代碼(遞歸演算法):
[code]
#include <iostream>
using namespace std;
typedef int T;
class bst{
struct Node{
T data;
Node* L;
Node* R;
Node(const T& d, Node* lp=NULL, Node* rp=NULL):data(d),L(lp),R(rp){}
};
Node* root;
int num;
public:
bst():root(NULL),num(0){}
void clear(Node* t){
if(t==NULL) return;
clear(t->L);
clear(t->R);
delete t;
}
~bst(){clear(root);}
void clear(){
clear(root);
num = 0;
root = NULL;
}
bool empty(){return root==NULL;}
int size(){return num;}
T getRoot(){
if(empty()) throw "empty tree";
return root->data;
}
void travel(Node* tree){
if(tree==NULL) return;
travel(tree->L);
cout << tree->data << ' ';
travel(tree->R);
}
void travel(){
travel(root);
cout << endl;
}
int height(Node* tree){
if(tree==NULL) return 0;
int lh = height(tree->L);
int rh = height(tree->R);
return 1+(lh>rh?lh:rh);
}
int height(){
return height(root);
}
void insert(Node*& tree, const T& d){
if(tree==NULL)
tree = new Node(d);
else if(ddata)
insert(tree->L, d);
else
insert(tree->R, d);
}
void insert(const T& d){
insert(root, d);
num++;
}
Node*& find(Node*& tree, const T& d){
if(tree==NULL) return tree;
if(tree->data==d) return tree;
if(ddata)
return find(tree->L, d);
else
return find(tree->R, d);
}
bool find(const T& d){
return find(root, d)!=NULL;
}
bool erase(const T& d){
Node*& pt = find(root, d);
if(pt==NULL) return false;
combine(pt->L, pt->R);
Node* p = pt;
pt = pt->R;
delete p;
num--;
return true;
}
void combine(Node* lc, Node*& rc){
if(lc==NULL) return;
if(rc==NULL) rc = lc;
else combine(lc, rc->L);
}
bool update(const T& od, const T& nd){
Node* p = find(root, od);
if(p==NULL) return false;
erase(od);
insert(nd);
return true;
}
};
int main()
{
bst b;
cout << "input some integers:";
for(;;){
int n;
cin >> n;
b.insert(n);
if(cin.peek()=='\n') break;
}
b.travel();
for(;;){
cout << "input data pair:";
int od, nd;
cin >> od >> nd;
if(od==-1&&nd==-1) break;
b.update(od, nd);
b.travel();
}
}
[/code]
Ⅹ java層次遍歷演算法思路
找個例子看一下就有了。比如遞歸前序遍歷二叉樹,即先根遍歷。先遍歷根節點,之後向下又是一個跟節點,在遍歷做節點,在遍歷右節點,依次下去,知道沒有右節點結束。在遍歷右邊的部分,根節點,左節點,右節點,知道沒有右節點是為止。至此遍歷結束。書上有圖一看就知道了。其他的遍歷按照遍歷演算法一樣。建議看下數據結構的遍歷,講的很詳細。