『壹』 python中定義函數應用while語句是對還是
對。
if name='quit':改為if name=='quit' :break一個等號表示賦值,兩個等號才表示相等。
while len(msg): # while +條件語句: 當條件語句為真True時執行,Flase結束循環。
tf.write(msg) # 寫入目標文件。
msg = sf.read(buffer_size) # 再次讀取 緩沖區文件內容msg。
當msg沒有內容的時候,msg為空, len(msg)==0, 就是Flase,結束循環,不再寫入tf
bool值 True 和 Flase 用整數表示就是 1 和 0; 這是規定。
面向對象:
Python既支持面向過程的編程也支持面向對象的編程。在「面向過程」的語言中,程序是由過程或僅僅是可重用代碼的函數構建起來的。在「面向對象」的語言中,程序是由數據和功能組合而成的對象構建起來的。
Python是完全面向對象的語言。函數、模塊、數字、字元串都是對象。並且完全支持繼承、重載、派生、多繼承,有益於增強源代碼的復用性。Python支持重載運算符和動態類型。
『貳』 在Python中定義Main函數
目錄
許多編程語言都有一個特殊的函數,當操作系統開始運行程序時會自動執行該函數。這個函數通常被命名為main(),並且依據語言標准具有特定的返回類型和參數。另一方面,Python解釋器從文件頂部開始執行腳本,並且沒有自動執行的特殊函數。
盡管如此,為程序的執行定義一個起始點有助於理解程序是如何運行的。Python程序員提出了幾種方式對此進行實現。
本文結束時,您將了解以下內容:
Python中的基本main()函數
一些Python腳本中,包含一個函數定義和一個條件語句,如下所示:
此代碼中,包含一個main()函數,在程序執行時列印Hello World!。此外,還包含一個條件(或if)語句,用於檢查__name__的值並將其與字元串"__main__"進行比較。當if語句為True時,Python解釋器將執行main()函數。更多關於Python條件語句的信息可以由此獲得。
這種代碼模式在Python文件中非常常見,它將作為腳本執行並導入另一個模塊。為了幫助理解這段代碼的執行方式,首先需要了解Python解釋器如何根據代碼的執行方式設置__name__。
Python中的執行模式
Python解釋器執行代碼有兩種方式:
更多內容可參考如何運行Python腳本。無論採用哪種方式,Python都會定義一個名為__name__的特殊變數,該變數包含一個字元串,其值取決於代碼的使用方式。
本文將如下示例文件保存為execution_methods.py,以 探索 代碼如何根據上下文改變行為:
在此文件中,定義了三個對print()函數的調用。前兩個列印一些介紹性短語。第三個print()會先列印短語The value __name__ is,之後將使用Python內置的repr()函數列印出__name__變數。
在Python中,repr()函數將對象轉化為供解釋器讀取的形式。上述示例通過使用repr()函數來強調__name__的值為字元串。更多關於repr()的內容可參考Python文檔。
在本文中,您將隨處可見文件(file),模塊(mole)和腳本(script)這三個字眼。實際上,三者之間並無太大的差別。不過,在強調代碼目的時,還是存在細微的差異:
「如何運行Python腳本」一文也討論了三者的差別。
基於命令行執行
在這類方法中,Python腳本將通過命令行來執行。
執行腳本時,無法與Python解釋器正在執行的代碼交互。關於如何通過命令行執行代碼的詳細信息對本文而言並不重要,但您可以通過展開下框閱讀更多有關Windows,Linux和macOS之間命令行差異的內容。
命令行環境
不同的操作系統在使用命令行執行代碼時存在細微的差異。
在Linux和macOS中,通常使用如下命令:
美元符號($)之前的內容可能有所不同,具體取決於您的用戶名和計算機名稱。您鍵入的命令位於$之後。在Linux或macOS上,Python3的可執行文件名為python3,因此可以通過輸入python3 script_name.py來運行python腳本。
在Windows上,命令提示符通常如下所示:
根據您的用戶名,>之前的內容可能會有所不同,您輸入的命令位於>之後。在Windows上,Python3的可執行文件通常為python。因此可以通過輸入python script_name.py來運行python腳本。
無論哪種操作系統,本文的Python腳本的輸出結果都是相同的。因此本文以Linux和macOS為例。
使用命令行執行execution_methods.py,如下所示:
在這個示例中,__name__具有值'__main__',其中引號(')表明該值為字元串類型。
請記住,在Python中,使用單引號(')和雙引號(")定義的字元串沒有區別。更多關於字元串的內容請參考Python的基本數據類型。
如果在腳本中包含"shebang行"並直接執行它(./execution_methods.py),或者使用IPython或Jupyter Notebook的%run,將會獲取相同的結果。
您還可以通過向命令行添加-m參數的方法實現以模塊的方式執行。通常情況下,推薦如下方式pip: python3 -m pip install package_name。
添加-m參數將會運行包中__main__.py的代碼。更多關於__main__.py文件的內容可參考如何將開源Python包發布到PyPI中。
在三種情況中,__name__都具有相同的值:字元串'__main__'。
技術細節:Python文檔中具體定義了__name__何時取值為'__main__'。
當通過標准輸入,腳本或者交互提示中讀取數據時,模塊的__name__將取值為'__main__'。(來源)
__name__與__doc__,__package__和其他屬性一起存儲在模塊的全局命名空間。更多關於屬性的信息可參考Python數據模型文檔,特別是關於模塊和包的信息,請參閱Python Import文檔。
導入模塊或解釋器
接下來是Python解釋器執行代碼的第二種方式:導入。在開發模塊或腳本時,可以使用import關鍵字導入他人已經構建的模塊。
在導入過程中,Python執行指定模塊中定義的語句(但僅在第一次導入模塊時)。要演示導入execution_methods.py文件的結果,需要啟動Python解釋器,然後導入execution_methods.py文件:
在此代碼輸出中,Python解釋器執行了三次print()函數調用。前兩行由於沒有變數,在輸出方面與在命令行上作為腳本執行時完全相同。但是第三個輸出存在差異。
當Python解釋器導入代碼時,__name__的值與要導入的模塊的名稱相同。您可以通過第三行的輸出了解這一點。__name__的值為'execution_methods',是Python導入的.py文件。
注意如果您在沒有退出Python時再次導入模塊,將不會有輸出。
注意:更多關於導入在Python中如何工作的內容請參考官方文檔和Python中的絕對和相對導入。
Main函數的最佳實踐
既然您已經了解兩種執行方式上的差異,那麼掌握一些最佳實踐方案還是很有用的。它們將適用於編寫作為腳本運行的代碼或者在另一個模塊導入的代碼。
如下是四種實踐方式:
將大部分代碼放入函數或類中
請記住,Python解釋器在導入模塊時會執行模塊中的所有代碼。有時如果想要實現用戶可控的代碼,會導致一些副作用,例如:
在這種情況下,想要實現用戶控制觸發此代碼的執行,而不是讓Python解釋器在導入模塊時執行代碼。
因此,最佳方法是將大部分代碼包含在函數或類中。這是因為當Python解釋器遇到def或class關鍵字時,它只存儲這些定義供以後使用,並且在用戶通知之前不會實際執行。
將如下代碼保存在best_practices.py以證明這個想法:
在此代碼中,首先從time模塊中導入sleep()。
在這個示例中,參數以秒的形式傳入sleep()函數中,解釋器將暫停一段時間再運行。隨後,使用print()函數列印關於代碼描述的語句。
之後,定義一個process_data()函數,執行如下五項操作:
在命令行中執行
當你將此文件作為腳本用命令行執行時會發生什麼呢?
Python解釋器將執行函數定義之外的from time import sleep和print(),之後將創建函數process_data()。然後,腳本將退出而不做任何進一步的操作,因為腳本沒有任何執行process_data()的代碼。
如下是這段腳本的執行結果:
我們在這里看到的輸出是第一個print()的結果。注意,從time導入和定義process_data()函數不產生結果。具體來說,調用定義在process_data()內部的print()不會列印結果。
導入模塊或解釋器執行
在會話(或其他模塊)中導入此文件時,Python解釋器將執行相同的步驟。
Python解釋器導入文件後,您可以使用已導入模塊中定義的任何變數,類或函數。為了證明這一點,我們將使用可交互的Python解釋器。啟動解釋器,然後鍵入import best_practices:
導入best_practices.py後唯一的輸出來自process_data()函數外定義的print()。導入模塊或解釋器執行與基於命令行執行類似。
使用__name__控制代碼的執行
如何實現基於命令行而不使用Python解釋器導入文件來執行呢?
您可以使用__name__來決定執行上下文,並且當__name__等於"__main__"時才執行process_data()。在best_practices.py文件中添加如下代碼:
這段代碼添加了一個條件語句來檢驗__name__的值。當值為"__main__"時,條件為True。記住當__name__變數的特殊值為"__main__"時意味著Python解釋器會執行腳本而不是將其導入。
條件語塊內添加了四行代碼(第12,13,14和15行):
現在,在命令行中運行best_practices.py,並觀察輸出的變化:
首先,輸出顯示了process_data()函數外的print()的調用結果。
之後,data的值被列印。因為當Python解釋器將文件作為腳本執行時,變數__name__具有值"__main__",因此條件語句被計算為True。
接下來,腳本將調用process_data()並傳入data進行修改。當process_data執行時,將輸出一些狀態信息。最終,將輸出modified_data的值。
現在您可以驗證從解釋器(或其他模塊)導入best_practices.py後發生的事情了。如下示例演示了這種情況:
注意,當前結果與將條件語句添加到文件末尾之前相同。因為此時__name__變數的值為"best_practices",因此條件語句結果為False,Python將不執行process_data()。
創建名為main()的函數來包含要運行的代碼
現在,您可以編寫作為腳本由從命令行執行並導入且沒有副作用的Python代碼。接下來,您將學習如何編寫代碼並使其他程序員能輕松地理解其含義。
許多語言,如C,C++,Java以及其他的一些語言,都會定義一個叫做main()的函數,當編譯程序時,操作系統會自動調用該函數。此函數通常被稱為入口點(entry point),因為它是程序進入執行的起始位置。
相比之下,Python沒有一個特殊的函數作為腳本的入口點。實際上在Python中可以將入口點定義成任何名稱。
盡管Python不要求將函數命名為main(),但是最佳的做法是將入口點函數命名為main()。這樣方便其他程序員定位程序的起點。
此外,main()函數應該包含Python解釋器執行文件時要運行的任何代碼。這比將代碼放入條件語塊中更好,因為用戶可以在導入模塊時重復使用main()函數。
修改best_practices.py文件如下所示:
在這個示例中,定義了一個main()函數,它包含了上面的條件語句塊。之後修改條件語塊執行main()。如果您將此代碼作為腳本運行或導入,將獲得與上一節相同的輸出。
在main()中調用其他函數
另一種常見的實現方式是在main()中調用其他函數,而不是直接將代碼寫入main()。這樣做的好處在於可以實現將幾個獨立運行的子任務整合。
例如,某個腳本有如下功能:
如果在單獨的函數中各自實現這些子任務,您(或其他用戶)可以很容易地實現代碼重用。之後您可以在main()函數中創建默認的工作流。
您可以根據自己的情況選擇是否使用此方案。將任務拆分為多個函數會使重用更容易,但會增加他人理解代碼的難度。
修改best_practices.py文件如下所示:
在此示例代碼中,文件的前10行具有與之前相同的內容。第12行的第二個函數創建並返回一些示例數據,第17行的第三個函數模擬將修改後的數據寫入資料庫。
第21行定義了main()函數。在此示例中,對main()做出修改,它將調用數據讀取,數據處理以及數據寫入等功能。
首先,從read_data_from_web()中創建data。將data作為參數傳入process_data(),之後將返回modified_data。最後,將modified_data傳入write_data_to_database()。
腳本的最後兩行是條件語塊用於驗證__name__,並且如果if語句為True,則執行main()。
在命令行中運行如下所示:
根據執行結果,Python解釋器在執行main()函數時,將依次執行read_data_from_web(),process_data()以及write_data_to_database()。當然,您也可以導入best_practices.py文件並重用process_data()作為不同的數據輸入源,如下所示:
在此示例中,導入了best_practices並且將其簡寫為bp。
導入過程會導致Python解釋器執行best_practices.py的全部代碼,因此輸出顯示解釋文件用途的信息。
然後,從文件中存儲數據而不是從Web中讀取數據。之後,可以重用best_practices.py文件中的process_data()和write_data_to_database()函數。在此情況下,可以利用代碼重寫來取代在main()函數中實現全部的代碼邏輯。
實踐總結
以下是Python中main()函數的四個關鍵最佳實踐:
結論
恭喜!您現在已經了解如何創建Python main()函數了。
本文介紹了如下內容:
現在,您可以開始編寫一些非常棒的關於Python main()函數代碼啦!
『叄』 python如何定義和調用函數
自定義函數用
def 函數名(參數):
(縮進)寫具體的函數部分,和寫普通程序一樣,只不過用return來返回需要的結果。
主程序裡面和使用普通內置函數一樣,函數名(參數)。
『肆』 python中定義函數的方法
def fun(n):
res = n
return res
大概這樣
『伍』 python怎麼定義
python中定義函數有兩種方式:
第一種 def()
那麼這種方式也是我們最經常遇到的,沒有其他任何的限制,具體示例見代碼
#這個函數的作用是對傳入的值進行加2操作def add2(x):y = x + 2return y
那麼我們怎麼調用呢?其實很簡單
# 定義一個變數i = 5# 對它執行加2操作add2(i)
那麼最終的結果也是顯而易見了,是7
第二種 lambda
這種方式由於書寫的方式(等下會在代碼中看到),所以就是適合很短的代碼,那麼讓我們來舉個栗子
# 定義了一個函數,作用是求一個數的平方square = lambda x: x * x
那麼我們怎麼調用呢?其實都是同樣的道理
# 定義變數number = 3 # 調用函數square(3)
那麼答案就是:9
『陸』 python裡面 如何動態調用 一個函數
function="luckywin."+case_name+"."+def_name
function=eval(function)
function(player_id,test_url)
function是個字元串,function(player_id,test_url) 這樣寫肯定不是字元串,怎麼能用eval呢,直接eval function返回函數名,然後調用函數
『柒』 python定義一個函數
def fn(*avg):
_ = avg[1]
_in = lambda x:x in _
for e in avg[1:]:
_ = list(filter(_in, e))
return _
print(fn((1,2,3),(1,2,5),(1,4,9,2)))
『捌』 用python定義一個函數
使用關鍵詞 def 聲明這是一個函數
1def 函數名 (參數):
2 語句塊
參數可以沒有,也可以有多個,用逗號隔開,第一行稱為函數頭,結尾一定要加冒號,代表開始進入函數體的執行。
語句塊也就是函數體,是關於這個函數要實現的功能的語句,語句要有返回值即return語句,如果沒有return語句,就代表return none.
『玖』 python 定義函數
params=(5,)*2
#params=(5,5)
power(*params)
#實際上就是pow(5,5)=3125