導航:首頁 > 編程語言 > python圖像四鄰域連通

python圖像四鄰域連通

發布時間:2022-10-08 10:09:15

㈠ 請問,在計算機圖形學中,四連通演算法填充時,種子會會重復入棧嗎

會啊,它入棧的順序是左上右下如有疑問請加429198063一起商討

python可以用來處理圖像嗎

可以的,
PythonWare公司提供了免費的Python圖像處理工具包PIL(Python Image Library),該軟體包提供了基本的圖像處理功能,如:

改變圖像大小,旋轉圖像,圖像格式轉換,色場空間轉換,圖像增強,直方圖處理,插值和濾波等等。雖然在這個軟體包上要實現類似MATLAB中的復雜的圖像處理演算法並不太適合,但是Python的快速開發能力以及面向對象等等諸多特點使得它非常適合用來進行原型開發。

在PIL中,任何一副圖像都是用一個Image對象表示,而這個類由和它同名的模塊導出,因此,最簡單的形式是這樣的:

import Image img = Image.open(「dip.jpg」)
注意:第一行的Image是模塊名;第二行的img是一個Image對象;
Image類是在Image模塊中定義的。關於Image模塊和Image類,切記不要混淆了。現在,我們就可以對img進行各種操作了,所有對img的
操作最終都會反映到到dip.img圖像上。

PIL提供了豐富的功能模塊:Image,ImageDraw,ImageEnhance,ImageFile等等。最常用到的模塊是
Image,ImageDraw,ImageEnhance這三個模塊。下面我對此分別做一介紹。關於其它模塊的使用請參見說明文檔.有關PIL軟體包和
相關的說明文檔可在PythonWare的站點www.Pythonware.com上獲得。

Image模塊:

Image模塊是PIL最基本的模塊,其中導出了Image類,一個Image類實例對象就對應了一副圖像。同時,Image模塊還提供了很多有用的函數。

(1)打開一文件:
import Image img = Image.open(「dip.jpg」)

這將返回一個Image類實例對象,後面的所有的操作都是在img上完成的。

(2)調整文件大小:

import Image img = Image.open("img.jpg") new_img = img.resize
((128,128),Image.BILINEAR) new_img.save("new_img.jpg")

原來的圖像大小是256x256,現在,保存的new_img.jpg的大小是128x128。

就是這么簡單,需要說明的是Image.BILINEAR指定採用雙線性法對像素點插值。

在批處理或者簡單的Python圖像處理任務中,採用Python和PIL(Python Image Library)的組合來完成圖像處理任務是一個很不錯的選擇。設想有一個需要對某個文件夾下的所有圖像將對比度提高2倍的任務。用Python來做將是十分簡單的。當然,我也不得不承認Python在圖像處理方面的功能還比較弱,顯然還不適合用來進行濾波、特徵提取等等一些更為復雜的應用。我個人的觀點是,當你要實現這些「高級」的演算法的時候,好吧,把它交給MATLAB去完成。但是,如果你面對的只是一個通常的不要求很復雜演算法的圖像處理任務,那麼,Python圖像處理應該才是你的最佳搭檔。

㈢ python處理圖片數據

目錄

1.機器是如何存儲圖像的?

2.在Python中讀取圖像數據

3.從圖像數據中提取特徵的方法#1:灰度像素值特徵

4.從圖像數據中提取特徵的方法#2:通道的平均像素值

5.從圖像數據中提取特徵的方法#3:提取邊緣
是一張數字8的圖像,仔細觀察就會發現,圖像是由小方格組成的。這些小方格被稱為像素。

但是要注意,人們是以視覺的形式觀察圖像的,可以輕松區分邊緣和顏色,從而識別圖片中的內容。然而機器很難做到這一點,它們以數字的形式存儲圖像。請看下圖:

機器以數字矩陣的形式儲存圖像,矩陣大小取決於任意給定圖像的像素數。

假設圖像的尺寸為180 x 200或n x m,這些尺寸基本上是圖像中的像素數(高x寬)。

這些數字或像素值表示像素的強度或亮度,較小的數字(接近0)表示黑色,較大的數字(接近255)表示白色。通過分析下面的圖像,讀者就會弄懂到目前為止所學到的知識。

下圖的尺寸為22 x 16,讀者可以通過計算像素數來驗證:

圖片源於機器學習應用課程

剛才討論的例子是黑白圖像,如果是生活中更為普遍的彩色呢?你是否認為彩色圖像也以2D矩陣的形式存儲?

彩色圖像通常由多種顏色組成,幾乎所有顏色都可以從三原色(紅色,綠色和藍色)生成。

因此,如果是彩色圖像,則要用到三個矩陣(或通道)——紅、綠、藍。每個矩陣值介於0到255之間,表示該像素的顏色強度。觀察下圖來理解這個概念:

圖片源於機器學習應用課程

左邊有一幅彩色圖像(人類可以看到),而在右邊,紅綠藍三個顏色通道對應三個矩陣,疊加三個通道以形成彩色圖像。

請注意,由於原始矩陣非常大且可視化難度較高,因此這些不是給定圖像的原始像素值。此外,還可以用各種其他的格式來存儲圖像,RGB是最受歡迎的,所以筆者放到這里。讀者可以在此處閱讀更多關於其他流行格式的信息。

用Python讀取圖像數據

下面開始將理論知識付諸實踐。啟動Python並載入圖像以觀察矩陣:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)

#checking image shape
image.shape, image

(28,28)

矩陣有784個值,而且這只是整個矩陣的一小部分。用一個LIVE編碼窗口,不用離開本文就可以運行上述所有代碼並查看結果。

下面來深入探討本文背後的核心思想,並探索使用像素值作為特徵的各種方法。

方法#1:灰度像素值特徵

從圖像創建特徵最簡單的方法就是將原始的像素用作單獨的特徵。

考慮相同的示例,就是上面那張圖(數字『8』),圖像尺寸為28×28。

能猜出這張圖片的特徵數量嗎?答案是與像素數相同!也就是有784個。

那麼問題來了,如何安排這784個像素作為特徵呢?這樣,可以簡單地依次追加每個像素值從而生成特徵向量。如下圖所示:

下面來用Python繪制圖像,並為該圖像創建這些特徵:

image = imread('puppy.jpeg', as_gray=True)

image.shape, imshow(image)

(650,450)

該圖像尺寸為650×450,因此特徵數量應為297,000。可以使用NumPy中的reshape函數生成,在其中指定圖像尺寸:

#pixel features

features = np.reshape(image, (660*450))

features.shape, features

(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])

這里就得到了特徵——長度為297,000的一維數組。很簡單吧?在實時編碼窗口中嘗試使用此方法提取特徵。

但結果只有一個通道或灰度圖像,對於彩色圖像是否也可以這樣呢?來看看吧!

方法#2:通道的平均像素值

在讀取上一節中的圖像時,設置了參數『as_gray = True』,因此在圖像中只有一個通道,可以輕松附加像素值。下面刪除參數並再次載入圖像:

image = imread('puppy.jpeg')
image.shape

(660, 450, 3)

這次,圖像尺寸為(660,450,3),其中3為通道數量。可以像之前一樣繼續創建特徵,此時特徵數量將是660*450*3 = 891,000。

或者,可以使用另一種方法:

生成一個新矩陣,這個矩陣具有來自三個通道的像素平均值,而不是分別使用三個通道中的像素值。

下圖可以讓讀者更清楚地了解這一思路:

這樣一來,特徵數量保持不變,並且還能考慮來自圖像全部三個通道的像素值。

image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape

(660, 450)

現有一個尺寸為(660×450×3)的三維矩陣,其中660為高度,450為寬度,3是通道數。為獲取平均像素值,要使用for循環:

for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)

新矩陣具有相同的高度和寬度,但只有一個通道。現在,可以按照與上一節相同的步驟進行操作。依次附加像素值以獲得一維數組:

features = np.reshape(feature_matrix, (660*450))
features.shape

(297000,)

方法#3:提取邊緣特徵

請思考,在下圖中,如何識別其中存在的對象:

識別出圖中的對象很容易——狗、汽車、還有貓,那麼在區分的時候要考慮哪些特徵呢?形狀是一個重要因素,其次是顏色,或者大小。如果機器也能像這樣識別形狀會怎麼樣?

類似的想法是提取邊緣作為特徵並將其作為模型的輸入。稍微考慮一下,要如何識別圖像中的邊緣呢?邊緣一般都是顏色急劇變化的地方,請看下圖:

筆者在這里突出了兩個邊緣。這兩處邊緣之所以可以被識別是因為在圖中,可以分別看到顏色從白色變為棕色,或者由棕色變為黑色。如你所知,圖像以數字的形式表示,因此就要尋找哪些像素值發生了劇烈變化。

假設圖像矩陣如下:

圖片源於機器學習應用課程

該像素兩側的像素值差異很大,於是可以得出結論,該像素處存在顯著的轉變,因此其為邊緣。現在問題又來了,是否一定要手動執行此步驟?

當然不!有各種可用於突出顯示圖像邊緣的內核,剛才討論的方法也可以使用Prewitt內核(在x方向上)來實現。以下是Prewitt內核:

獲取所選像素周圍的值,並將其與所選內核(Prewitt內核)相乘,然後可以添加結果值以獲得最終值。由於±1已經分別存在於兩列之中,因此添加這些值就相當於獲取差異。

還有其他各種內核,下面是四種最常用的內核:

圖片源於機器學習應用課程

現在回到筆記本,為同一圖像生成邊緣特徵:

#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline

#reading the image
image = imread('puppy.jpeg',as_gray=True)

#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)

imshow(edges_prewitt_vertical, cmap='gray')

㈣ python圖像處理代碼,望大神詳細解釋。越詳細越好

#初始化一個矩形np.max(marks)+1行,3列,默認值為0
colorTab=np.zeros((np.max(marks)+1,3))

#遍歷數組,給每行的3列賦值,就是RGB顏色值,8位的
foriinrange(len(colorTab)):
aa=np.random.uniform(0,255)
bb=np.random.uniform(0,255)
cc=np.random.uniform(0,255)
colorTab[i]=np.array([aa,bb,cc],np.uint8)

#初始化另一個跟img圖像形狀大小一樣的圖像,一副黑色圖像
bgrImage=np.zeros(img.shape,np.uint8)

#遍歷marks形狀的行列
foriinrange(marks.shape[0]):
forjinrange(marks.shape[1]):

index=marks[i][j]
#判斷是不是區域與區域之間的分界,如果是邊界(-1),則使用白色顯示
ifindex==-1:
bgrImage[i][j]=np.array([255,255,255])#像素點設置位白色
else:
bgrImage[i][j]=colorTab[index]#像素點設置位上邊隨機生成的顏色值

#顯示處理後的圖像圖像
cv2.imshow('AfterColorFill',bgrImage)
#總結,先生成一個跟marks相同數量的row*col的一張顏色表,然後創建一個跟marks相同大小的一副黑色圖像
#最後對黑色圖像畫出白色邊界和內部隨機彩色像素值

㈤ Python實操:手把手教你用Matplotlib把數據畫出來

作者:邁克爾·貝耶勒(Michael Beyeler)

如需轉載請聯系華章 科技

如果已安裝Anaconda Python版本,就已經安裝好了可以使用的 Matplotlib。否則,可能要訪問官網並從中獲取安裝說明:

http://matplotlib.org

正如使用np作為 NumPy 的縮寫,我們將使用一些標準的縮寫來表示 Matplotlib 的引入:

在本書中,plt介面會被頻繁使用。

讓我們創建第一個繪圖。

假設想要畫出正弦函數sin(x)的線性圖。得到函數在x坐標軸上0≤x<10內所有點的值。我們將使用 NumPy 中的 linspace 函數來在x坐標軸上創建一個從0到10的線性空間,以及100個采樣點:

可以使用 NumPy 中的sin函數得到所有x點的值,並通過調用plt中的plot函數把結果畫出來:

你親自嘗試了嗎?發生了什麼嗎?有沒有什麼東西出現?

實際情況是,取決於你在哪裡運行腳本,可能無法看到任何東西。有下面幾種可能性:

1. 從.py腳本中繪圖

如果從一個腳本中運行 Matplotlib,需要加上下面的這行調用:

在腳本末尾調用這個函數,你的繪圖就會出現!

2. 從 IPython shell 中繪圖

這實際上是互動式地執行Matplotlib最方便的方式。為了讓繪圖出現,需要在啟動 IPython 後使用所謂的%matplotlib魔法命令

接下來,無須每次調用plt.show()函數,所有的繪圖將會自動出現。

3. 從 Jupyter Notebook 中繪圖

如果你是從基於瀏覽器的 Jupyter Notebook 中看這段代碼,需要使用同樣的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入圖形,這會有兩種輸出選項:

在本書中,將會使用inline選項:

現在再次嘗試一下:

上面的命令會得到下面的繪圖輸出結果:

如果想要把繪圖保存下來留作以後使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:

僅需要確保你使用了支持的文件後綴,比如.jpg、.png、.tif、.svg、.eps或者.pdf

作為本章最後一個測試,讓我們對外部數據集進行可視化,比如scikit-learn中的數字數據集。

為此,需要三個可視化工具:

那麼開始引入這些包吧:

第一步是載入實際數據:

如果沒記錯的話,digits應該有兩個不同的數據域:data域包含了真正的圖像數據,target域包含了圖像的標簽。相對於相信我們的記憶,我們還是應該對digits稍加 探索 。輸入它的名字,添加一個點號,然後按Tab鍵:digits.<TAB>,這個操作將向我們展示digits也包含了一些其他的域,比如一個名為images的域。images和data這兩個域,似乎簡單從形狀上就可以區分。

兩種情況中,第一維對應的都是數據集中的圖像數量。然而,data中所有像素都在一個大的向量中排列,而images保留了各個圖像8×8的空間排列。

因此,如果想要繪制出一副單獨的圖像,使用images將更加合適。首先,使用NumPy的數組切片從數據集中獲取一幅圖像:

這里是從1797個元素的數組中獲取了它的第一行數據,這行數據對應的是8×8=64個像素。下面就可以使用plt中的imshow函數來繪制這幅圖像:

上面的命令得到下面的輸出:

此外,這里也使用cmap參數指定了一個顏色映射。默認情況下,Matplotlib 使用MATLAB默認的顏色映射jet。然而,在灰度圖像的情況下,gray顏色映射更有效。

最後,可以使用plt的subplot函數繪制全部數字的樣例。subplot函數與MATLAB中的函數一樣,需要指定行數、列數以及當前的子繪圖索引(從1開始計算)。我們將使用for 循環在數據集中迭代出前十張圖像,每張圖像都分配到一個單獨的子繪圖中。

這會得到下面的輸出結果:

關於作者:Michael Beyeler,華盛頓大學神經工程和數據科學專業的博士後,主攻仿生視覺計算模型,用以為盲人植入人工視網膜(仿生眼睛),改善盲人的視覺體驗。 他的工作屬於神經科學、計算機工程、計算機視覺和機器學習的交叉領域。同時他也是多個開源項目的積極貢獻者。

本文摘編自《機器學習:使用OpenCV和Python進行智能圖像處理》,經出版方授權發布。

㈥ python:PIL圖像處理

PIL (Python Imaging Library)

Python圖像處理庫,該庫支持多種文件格式,提供強大的圖像處理功能。

PIL中最重要的類是Image類,該類在Image模塊中定義。

從文件載入圖像:

如果成功,這個函數返回一個Image對象。現在你可以使用該對象的屬性來探索文件的內容。

format 屬性指定了圖像文件的格式,如果圖像不是從文件中載入的則為 None 。
size 屬性是一個2個元素的元組,包含圖像寬度和高度(像素)。
mode 屬性定義了像素格式,常用的像素格式為:「L」 (luminance) - 灰度圖, 「RGB」 , 「CMYK」。

如果文件打開失敗, 將拋出IOError異常。

一旦你擁有一個Image類的實例,你就可以用該類定義的方法操作圖像。比如:顯示

( show() 的標准實現不是很有效率,因為它將圖像保存到一個臨時文件,然後調用外部工具(比如系統的默認圖片查看軟體)顯示圖像。該函數將是一個非常方便的調試和測試工具。)

接下來的部分展示了該庫提供的不同功能。

PIL支持多種圖像格式。從磁碟中讀取文件,只需使用 Image 模塊中的 open 函數。不需要提供文件的圖像格式。PIL庫將根據文件內容自動檢測。

如果要保存到文件,使用 Image 模塊中的 save 函數。當保存文件時,文件名很重要,除非指定格式,否則PIL庫將根據文件的擴展名來決定使用哪種格式保存。

** 轉換文件到JPEG **

save 函數的第二個參數可以指定使用的文件格式。如果文件名中使用了一個非標準的擴展名,則必須通過第二個參數來指定文件格式。

** 創建JPEG縮略圖 **

需要注意的是,PIL只有在需要的時候才載入像素數據。當你打開一個文件時,PIL只是讀取文件頭獲得文件格式、圖像模式、圖像大小等屬性,而像素數據只有在需要的時候才會載入。

這意味著打開一個圖像文件是一個非常快的操作,不會受文件大小和壓縮演算法類型的影響。

** 獲得圖像信息 **

Image 類提供了某些方法,可以操作圖像的子區域。提取圖像的某個子區域,使用 crop() 函數。

** 復制圖像的子區域 **

定義區域使用一個包含4個元素的元組,(left, upper, right, lower)。坐標原點位於左上角。上面的例子提取的子區域包含300x300個像素。

該區域可以做接下來的處理然後再粘貼回去。

** 處理子區域然後粘貼回去 **

當往回粘貼時,區域的大小必須和參數匹配。另外區域不能超出圖像的邊界。然而原圖像和區域的顏色模式無需匹配。區域會自動轉換。

** 滾動圖像 **

paste() 函數有個可選參數,接受一個掩碼圖像。掩碼中255表示指定位置為不透明,0表示粘貼的圖像完全透明,中間的值表示不同級別的透明度。

PIL允許分別操作多通道圖像的每個通道,比如RGB圖像。 split() 函數創建一個圖像集合,每個圖像包含一個通道。 merge() 函數接受一個顏色模式和一個圖像元組,然後將它們合並為一個新的圖像。接下來的例子交換了一個RGB圖像的三個通道。

** 分離和合並圖像通道 **

對於單通道圖像, split() 函數返回圖像本身。如果想處理各個顏色通道,你可能需要先將圖像轉為RGB模式。

resize() 函數接受一個元組,指定圖像的新大小。
rotate() 函數接受一個角度值,逆時針旋轉。

** 基本幾何變換 **

圖像旋轉90度也可以使用 transpose() 函數。 transpose() 函數也可以水平或垂直翻轉圖像。

** transpose **

transpose() 和 rotate() 函數在性能和結果上沒有區別。

更通用的圖像變換函數為 transform() 。

PIL可以轉換圖像的像素模式。

** 轉換顏色模式 **

PIL庫支持從其他模式轉為「L」或「RGB」模式,其他模式之間轉換,則需要使用一個中間圖像,通常是「RGB」圖像。

ImageFilter 模塊包含多個預定義的圖像增強過濾器用於 filter() 函數。

** 應用過濾器 **

point() 函數用於操作圖像的像素值。該函數通常需要傳入一個函數對象,用於操作圖像的每個像素:

** 應用點操作 **

使用以上技術可以快速地對圖像像素應用任何簡單的表達式。可以結合 point() 函數和 paste 函數修改圖像。

** 處理圖像的各個通道 **

注意用於創建掩碼圖像的語法:

Python計算邏輯表達式採用短路方式,即:如果and運算符左側為false,就不再計算and右側的表達式,而且返回結果是表達式的結果。比如 a and b 如果a為false則返回a,如果a為true則返回b,詳見Python語法。

對於更多高級的圖像增強功能,可以使用 ImageEnhance 模塊中的類。

可以調整圖像對比度、亮度、色彩平衡、銳度等。

** 增強圖像 **

PIL庫包含對圖像序列(動畫格式)的基本支持。支持的序列格式包括 FLI/FLC 、 GIF 和一些實驗性的格式。 TIFF 文件也可以包含多個幀。

當打開一個序列文件時,PIL庫自動載入第一幀。你可以使用 seek() 函數 tell() 函數在不同幀之間移動。

** 讀取序列 **

如例子中展示的,當序列到達結尾時,將拋出EOFError異常。

注意當前版本的庫中多數底層驅動只允許seek到下一幀。如果想回到前面的幀,只能重新打開圖像。

以下迭代器類允許在for語句中循環遍歷序列:

** 一個序列迭代器類 **

PIL庫包含一些函數用於將圖像、文本列印到Postscript列印機。以下是一個簡單的例子。

** 列印到Postscript **

如前所述,可以使用 open() 函數打開圖像文件,通常傳入一個文件名作為參數:

如果打開成功,返回一個Image對象,否則拋出IOError異常。

也可以使用一個file-like object代替文件名(暫可以理解為文件句柄)。該對象必須實現read,seek,tell函數,必須以二進制模式打開。

** 從文件句柄打開圖像 **

如果從字元串數據中讀取圖像,使用StringIO類:

** 從字元串中讀取 **

如果圖像文件內嵌在一個大文件里,比如 tar 文件中。可以使用ContainerIO或TarIO模塊來訪問。

** 從tar文檔中讀取 **

** 該小節不太理解,請參考原文 **

有些解碼器允許當讀取文件時操作圖像。通常用於在創建縮略圖時加速解碼(當速度比質量重要時)和輸出一個灰度圖到激光列印機時。

draft() 函數。

** Reading in draft mode **

輸出類似以下內容:

注意結果圖像可能不會和請求的模式和大小匹配。如果要確保圖像不大於指定的大小,請使用 thumbnail 函數。

Python2.7 教程 PIL
http://www.liaoxuefeng.com/wiki//

Python 之 使用 PIL 庫做圖像處理
http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html

來自 http://effbot.org/imagingbook/introction.htm

㈦ 請介紹哈,關於圖像的基本知識,像素,像素的四鄰接 8鄰接 連通性 鄰接性 這方面的達人來哈

首先鄰域的概念有4鄰域,8鄰域之分。其中8鄰域=4鄰域+對角鄰域。
鄰接:兩個像素接觸,則它們是鄰接的。一個像素和它的鄰域中的像素是接觸的。鄰接僅考慮像素的空間關系。
連接:(1)是鄰接的。(2)灰度值(或其他屬性)滿足某個特定的相似准則(灰度相等或在某個集合中等條件)。
這樣我們就有了4-連接,8-連接和m-連接的概念,這些概念我在上圖像處理課的時候理解的不好,這里詳細講一下。
(1)4-連接:2個像素p和r在灰度集合V中取值且r在N4(p)---p的4鄰域中。
(2)8-連接:概念類似(1)。
(3)m-連接:也叫混合連接,2個像素p和r在灰度集合V中取值且滿足<1>r在N4(p)中;<2>r在Nd(p)中且N4(p)與N4(r)的交集元素不在V中。
「混合連接實質上是在像素間同時存在4-連接和8-連接時,優先採用4-連接,並屏蔽兩個和同一像素間存在4-連接的像素之間的8-連接。」這是《圖像工程》中的原話,我覺得對m-連接的概念講得比較好理解,而且印象深刻。
說來也好理解,這種m-連接的引入目的之一就是消除8-連接的多路問題。8-連接在像素距離的選擇時有多種路徑,引發歧義,而m-連接則沒有。
連通:說白了和圖里的節點連通性道理一樣。就是兩個像素之間,如果有一條通路能把它們連接起來,那麼就是連通的了。當然,連接是連通的一種特例,就是在兩個鄰近的像素之間的連通。對應連接的概念,連通也分4-連通和8-連通。
在像素的鄰接和連通定義我們都熟知後,其實還有比較復雜點的概念引入,那就是像素集合的鄰接和連通。如果把一幅圖像看做是所有像素的集合,那麼根據像素間的關系則可把像素結合成圖像的子集合。那麼顯然這些子集也滿足像圖像像素元素那樣的連通和連接性質(這個應該可以歸納證明的~~這里偷個懶吧囧)。對圖像子集S中的任何一個像素p,所有和p相連通又在S中的像素的集合合起來稱為S中的一個連通組元。如果S只有一個連通組元,即S中所有像素都互相連通,那麼S就是一個連通集。如果一幅圖像的所有像素都分屬於幾個連通集,則可以說這幾個連通集是整個圖像的連通組元。圖像里的每個連通集構成圖像的一個區域,這樣我們就引入了區域的概念。

㈧ 數字圖像處理中四連通為什麼一定八連通

上面的圖分別表示四鄰域、對角鄰域、八鄰域,而4-連接的定義是:2個象素 p 和 r 在V 中取值且 r 在N4(p)中,8-連接的定義是:2個象素 p 和 r 在V 中取值且 r 在N8(p)中。

所以四連通是特殊的八連通。

閱讀全文

與python圖像四鄰域連通相關的資料

熱點內容
單片機的功能模塊 瀏覽:769
安卓手機如何錄制視頻長時間 瀏覽:283
安全問題app哪個好 瀏覽:445
壓縮水會變冰嗎 瀏覽:526
小說配音app哪個靠譜 瀏覽:820
編譯iso 瀏覽:944
照片生成pdf格式 瀏覽:194
病歷轉pdf 瀏覽:835
雲伺服器配硬體 瀏覽:978
伺服器10k什麼意思 瀏覽:21
pdfeditor漢化 瀏覽:884
新科學pdf 瀏覽:746
現在還有c語言編譯嗎 瀏覽:675
哪裡買到單片機 瀏覽:480
linux文件打開數量 瀏覽:510
編譯原理中什麼是l屬性文法 瀏覽:372
硬碟加密時出現的問題 瀏覽:61
如何退域命令 瀏覽:108
看書的app哪裡看 瀏覽:291
伺服器怎麼調大 瀏覽:4