❶ python自動化測試框架有哪些
自動化測試常用的Python框架有哪些?常用的框架有Robot Framework、Pytest、UnitTest/PyUnit、Behave、Lettuce。Pytest、Robot Framework和UnitTest主要用於功能與單元測試,Lettuce和Behave僅適用於行為驅動測試。
一、Robot Framework
Python測試框架之一,Robot Framework被用在測試驅動(test-driven)類型的開發與驗收中。雖然是由Python開發而來,但是它也可以在基於.Net的IronPython和基於java的Jython上運行。作為一個Python框架,Robot還能夠兼容諸如Windows、MacOS、以及Linux等平台。
在使用Robot Framework(RF)之前,需要先安裝Python 2.7.14及以上的版本。推薦使用Python 3.6.4,以確保適當的注釋能夠被添加到代碼段中,並能夠跟蹤程序的更改。同時還需要安裝Python包管理器--pip。
二、Pytest
適用於多種軟體測試的Pytest,是另一個Python類型的自動化測試框架。憑借著其開源和易學的特點,該工具經常被QA(質量分析)團隊、開發團隊、個人團隊、以及各種開源項目所使用。鑒於Pytest具有「斷言重寫(assert rewriting)」之類的實用功能,許多大型互聯網應用,如Dropbox和Mozilla,都已經從下面將要提到的unittest(Pyunit)切換到了Pytest之上。
除了基本的Python知識,用戶並不需要更多的技術儲備。另外,用戶只需要有一台帶有命令行界面的測試設備,並且安裝好了Python包管理器、以及可用於開發的IDE工具。
三、UnitTest/PyUnit
UnitTest/PyUnit一種標准化的針對單元測試的Python類自動化測試框架。基類TestCase提供了各種斷言方法、以及所有清理和設置的常式。因此,TestCase子類中的每一種方法都是以「test」作為名詞前綴,以標識它們能夠被作為測試用例所運行。用戶可以使用load方法和TestSuite類來分組、並載入各種測試。
可以通過聯合使用,來構建自定義的測試運行器。正如我們使用Junit去測試Selenium那樣,UnitTest也會用到UnitTest-sml-reporting、並能生成各種XML類型的報告。由於UnitTest默認使用了Python,因此我們並不需要什麼先決條件。除了需要具備Python框架的基本知識,您也可以額外地安裝pip、以及用於開發的IDE工具。
四、Behave
行為驅動開發是一種基於敏捷軟體開發的方法。它能夠鼓勵開發人員、業務參與者和QA人員,三者之間的協作。Python測試框架Behave允許團隊避開各種復雜的情況,去執行BDD測試。從本質上說該框架與SpecFlow和Cucumber相似,常被用於執行自動化測試。用戶可以通過簡單易讀的語言來編寫測試用例,並能夠在其執行期間粘貼到代碼之中。而且,那些被設定的行為規范與步驟,也可以被重用到其他的測試方案中。
任何具備Python基礎知識的人都可以使用Behave。其他先決條件還包括:先安裝Python 2.7.14及以上的版本。通過Python包管理器或pip來與Behave協作。大多數開發人員會選擇Pycharm作為開發環境,當然您也可以選用其他的IDE工具。
五、Lettuce
Lettuce是另一種基於Cucumber和Python的行為驅動類自動化工具。Lettuce主要專注於那些具有行為驅動開發特徵的普通任務。它不但簡單易用,而且能夠使得整個測試過程更流暢、甚至更有趣。安裝帶有IDE的Python 2.7.14、及以上的版本。當然,您也可以使用Pycharm或任何其他IDE工具。同時,您還需要安裝Python包管理器。
❷ 怎麼用python對java進行單元測試
一般不會用python去做c/c++的代碼單元測試。
c/c++編寫的程序,都有專門的框架叫CUnit去編寫單元測試代碼。
Java也有自己的單元測試框架,叫JUnit;python編寫的代碼也可以用PyUnit單元測試框架。
❸ python單元測試--mock
使用mock,可以將某個函數所依賴的對象或者變數mock掉,從而降低測試條件的負責度。如下所示:
上述是mock對象的簡單使用方法,通過實例化一個Mock對象從而模擬掉原始函數的返回值,高級一些的用法就是通過mock.patch裝飾器,裝飾在類或者函數上進行模擬測試,如下在test.py文件中有兩個類:
測試用例設計如下:
以上測試用例說明,通過patch裝飾器模擬了 test.ProctionClass1 這個類,在 test_01 中使用 mock_class 模擬 test.ProctionClass1 。首先通過 mock_class.return_value 獲取類實例(如果模擬的是函數,則不需要這一步),然後通過 obj1.pro1_method.return_value 設置方法的返回值,並進行測試。測試結果說明無論是通過 mock_class 還是 test.ProctionClass1 還是 obj1 執行方法,獲取到的結果都是設置的值,並且在另一個類中調用模擬類的方法,也能成功獲取到設置的 return_value 。
❹ Python自動化測試框架有哪些
第一種:Robot Framework
作為最重要的python測試框架之一,Robot Framework主要被用在測試驅動類型的開發與驗收中。雖然由python開發而來,但是它也可以在基於.net的Ironpython和基於Java的Jython上運行。同時,作為一個python框架,Robot還能夠兼容諸如Windows、MacOS、Linux等平台。
在使用Robot Framework之前,需要先安裝python2.7.14及以上版本,在這里推薦大家使用python3.6.4,以確保適當的註解能夠被添加到代碼段中,並能夠跟蹤程序的更改,同時,您還需要安裝python包管理器--pip。
第二種:Pytest
適用於多種軟體測試的Pytest,是另一個python類型的自動化測試框架。憑借著開源和易學的特點,該工具經常被QA團體、開發團體、個人團體以及各種開源項目所使用。鑒於Pytest具有斷言重寫之類的實用功能,許多大型互聯網應用,如Dropbox、Mozilla,都已經從下面將要提到的unittest切換到了Pytest之上。
除了基本的python知識,用戶並不需要更多的技術儲備。另外,用戶只需要有一台帶有命令行界面的測試設備,並且安裝好了python包管理器以及可用於開發的IDE工具。
第三種:UnitTest/PyUnit
受到Junit啟發的UnitTest/PyUnit,也是一種標准化的針對單元測試的python類自動化測試框架。它的基類TestCase提供了各種斷言方法、以及所有清理和設置的常式。因此,TestCase子類中的每一種方法都是以test作為名詞點綴,以標識它們能夠被作為測試用例所運行。用戶可以使用load方法和TestSuite類來分組、並載入各種測試。當然,也可以通過聯合使用,來構建自定義的測試運行器。正如我們使用Junit去測試Selenium那樣,UnitTest也會用到unittest-sml-reporting,並能生成各種XML類型的報告。
第四種:Behave
行為驅動開發是一種基於敏捷軟體開發的方法。它能夠鼓勵開發人員、業務參與者和QA人員,三者之間的協作。python測試框架Behave允許團隊避開各種復雜的情況,去執行BDD測試。從本質上說該框架與SpecFlow和Cucumber相似,常被用於執行自動化測試。用戶可以通過簡單易讀的語言來編寫測試用例,並能夠在其執行期間粘貼到代碼之中。而且,那些被設定的行為規范與步驟,也可以被重用到其他的測試方案中。
第五種:Lettuce
Lettuce是另一種基於Cucumber和python的行為驅動類自動化工具。Lettuce主要專注於那些具有行為驅動開發特性的普通任務。它不但簡單易用,而且能夠使得整個測試過程更流暢、甚至更有趣。
您需要安裝帶有IDE的python2.7.14及以上版本。當然,您也可以使用pycharm或任何其他IDE工具。同時,您還需要安裝python包管理器。
❺ 徒手搭建Python單元測試框架
稍微具有一定規模的企業對於軟體開發一般都會要求寫單元測試,雖然各自標准不同,有的可能要求覆蓋率達到50即可,而像我司這種竟然要求行覆蓋率和分支覆蓋率都要到95%以上。本文會手把手教你如何在項目初期搭建單元測試框架,以便能夠指導後續開發進行單元測試編寫和測試報告生成。本文適合python項目的架構師或者核心發起者。如果是小白也可以了解下單元測試是怎麼搭建的以及一些單元測試的原則。
一般項目如果是web項目都會有配置文件,那麼啟動單元測試的應用上下文也需要測試用的配置文件。下面是一個基於flask開發的web項目的單元測試配置文件。大家可以參考下。如果項目不是web項目而是腳本倉庫也可以不需要這塊。
基礎測試類會初始化測試應用上下文以及內存資料庫初始化,以及測試完成後的數據清理
測試聚合類是用來掃描所有測試模塊並運行測試用例的
python的Coverage庫是用來生成測試報的,可以通過.coverage文件配置測試報告的內存,包括忽略項,是否包含分支覆蓋率,測試報告生成位置和形式(xml或者html)等
通過運行以下coverage 模塊生成測試報告
❻ python如何開展單元測試
首先你要知道單元測試是什麼,單元測試就是針對軟體中的最小可測試單元進行檢查和驗證,在python中可以理解為是對類或者是方法的正確性驗證
其次要了解python語言中的單元測試框架有哪些,在python語言中的單元測試框架也有很多,解釋本身自帶的unittest單元測試框架,還有很流行的pytest(有豐富的插件),這些在我之前在黑馬程序員學習測試時都有涉及,或者你可以去看論壇上面有很多python開展單元測試的技術文章。
最後使用某個單元測試框架如何實現,拿解釋器自帶的unittest舉例子吧,使用這個框架來實現單元測試的話,需要創建測試類,創建測試方法,設置fixture,斷言,然後通過測試條件和運行器來執行測試用例.其測試數據可以使用參數化動態獲取.
❼ 用python單元測試怎麼測一段代碼
單元測試是用來對一個模塊、一個函數或者一個類來進行正確性檢驗的測試工作。
比如對函數abs(),我們可以編寫出以下幾個測試用例:
輸入正數,比如1、1.2、0.99,期待返回值與輸入相同;
輸入負數,比如-1、-1.2、-0.99,期待返回值與輸入相反;
輸入0,期待返回0;
輸入非數值類型,比如None、[]、{},期待拋出TypeError。
把上面的測試用例放到一個測試模塊里,就是一個完整的單元測試。
如果單元測試通過,說明我們測試的這個函數能夠正常工作。如果單元測試不通過,要麼函數有bug,要麼測試條件輸入不正確,總之,需要修復使單元測試能夠通過。
單元測試通過後有什麼意義呢?如果我們對abs()函數代碼做了修改,只需要再跑一遍單元測試,如果通過,說明我們的修改不會對abs()函數原有的行為造成影響,如果測試不通過,說明我們的修改與原有行為不一致,要麼修改代碼,要麼修改測試。
這種以測試為驅動的開發模式最大的好處就是確保一個程序模塊的行為符合我們設計的測試用例。在將來修改的時候,可以極大程度地保證該模塊行為仍然是正確的。
我們來編寫一個Dict類,這個類的行為和dict一致,但是可以通過屬性來訪問,用起來就像下面這樣:
>>> d = Dict(a=1, b=2)
>>> d['a']
1
>>> d.a
1
mydict.py代碼如下:
class Dict(dict):
def __init__(self, **kw):
super(Dict, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
為了編寫單元測試,我們需要引入Python自帶的unittest模塊,編寫mydict_test.py如下:
import unittest
from mydict import Dict
class TestDict(unittest.TestCase):
def test_init(self):
d = Dict(a=1, b='test')
self.assertEquals(d.a, 1)
self.assertEquals(d.b, 'test')
self.assertTrue(isinstance(d, dict))
def test_key(self):
d = Dict()
d['key'] = 'value'
self.assertEquals(d.key, 'value')
def test_attr(self):
d = Dict()
d.key = 'value'
self.assertTrue('key' in d)
self.assertEquals(d['key'], 'value')
def test_keyerror(self):
d = Dict()
with self.assertRaises(KeyError):
value = d['empty']
def test_attrerror(self):
d = Dict()
with self.assertRaises(AttributeError):
value = d.empty
編寫單元測試時,我們需要編寫一個測試類,從unittest.TestCase繼承。
以test開頭的方法就是測試方法,不以test開頭的方法不被認為是測試方法,測試的時候不會被執行。
對每一類測試都需要編寫一個test_xxx()方法。由於unittest.TestCase提供了很多內置的條件判斷,我們只需要調用這些方法就可以斷言輸出是否是我們所期望的。最常用的斷言就是assertEquals():
self.assertEquals(abs(-1), 1) # 斷言函數返回的結果與1相等
另一種重要的斷言就是期待拋出指定類型的Error,比如通過d['empty']訪問不存在的key時,斷言會拋出KeyError:
with self.assertRaises(KeyError):
value = d['empty']
而通過d.empty訪問不存在的key時,我們期待拋出AttributeError:
with self.assertRaises(AttributeError):
value = d.empty
運行單元測試
一旦編寫好單元測試,我們就可以運行單元測試。最簡單的運行方式是在mydict_test.py的最後加上兩行代碼:
if __name__ == '__main__':
unittest.main()
這樣就可以把mydict_test.py當做正常的python腳本運行:
$ python mydict_test.py
另一種更常見的方法是在命令行通過參數-m unittest直接運行單元測試:
$ python -m unittest mydict_test
.....
----------------------------------------------------------------------
Ran 5 tests in 0.000s
OK
這是推薦的做法,因為這樣可以一次批量運行很多單元測試,並且,有很多工具可以自動來運行這些單元測試。
setUp與tearDown
可以在單元測試中編寫兩個特殊的setUp()和tearDown()方法。這兩個方法會分別在每調用一個測試方法的前後分別被執行。
setUp()和tearDown()方法有什麼用呢?設想你的測試需要啟動一個資料庫,這時,就可以在setUp()方法中連接資料庫,在tearDown()方法中關閉資料庫,這樣,不必在每個測試方法中重復相同的代碼:
class TestDict(unittest.TestCase):
def setUp(self):
print 'setUp...'
def tearDown(self):
print 'tearDown...'
可以再次運行測試看看每個測試方法調用前後是否會列印出setUp...和tearDown...。