importdatetime
importtime
defis_leap_year(year):#判斷閏年,是則返回True,否則返回False
if(year%4==0andyear%100!=0)oryear%400==0:
returnTrue
else:
returnFalse
deffunction(year,month,day):#直接使用Python內置模塊datetime的格式轉換功能得到結果
date=datetime.date(year,month,day)
returndate.strftime('%j')
year=int(input('請輸入年(如:2013)'))
month=int(input('請輸入月(如:6)'))
day=int(input('請輸入日(如:23)'))
print('%s年中的第%s天。'%(year,function(year,month,day)))
2. 小哥哥小姐姐誰有Python青少年兒童孩子少兒編程的百度資源可以分享一下嗎,跪求,超級想看,謝謝
鏈接: https://pan..com/s/1aomZjvvmCuWe-Gy88-lk6w
3. Python 在編程語言中是什麼地位為什麼很多大學不教 Python
作者看著網上各種數據分析的知識泛濫, 但是沒有什麼體系,初學者不知道學哪些, 不知道學多少, 不知道學多深, 單純一個python語言, 數據分析會用到那種程度, 不可能說像開發那樣去學, numpy如果不是做演算法工程師用到的知識並不多, pandas知識雜亂無章, 哪些才是最常用的功能等等, 作者不忍眾生皆苦, 決定寫一套python數據分析的全套教程, 目前已完成一部分課件的製作。需要說明的是, 作為一名數據分析師, 你應該先會一點Excel和SQL知識,相關的內容, 網上很多。但是, 即便你一點Excel和SQL都不會也不會影響這部分的學習 !目前作者整理的大綱如下:
第一章 python編程基礎
1.1 python語言概述 1.2 數據科學神器--Anaconda介紹與安裝 1.3 標准輸入輸出 1.4 變數定義與賦值 1.5 數據類型 1.6 流程式控制制語句 1.7 函數
1.8 面向對象編程 第二章 python數據清洗之numpy 2.1 核心ndarray對象的創建 2.2 ndarray對象常用的屬性和方法 2.3 ndarray對象的索引和切片 2.4 ndarray對象的分割與合並 2.5 ndarray對象的廣播(Broadcast) 2.6 numpy中的算術運算函數 2.7 numpy中的統計函數 2.8 numpy中的排序 搜索 計數 去重函數 2.9 numpy中的字元串函數 2.10 numpy中可能會用到的線性代數模塊(後期機器學習會用到一點)
第三章 數據清洗神器pandas
3.1 pandas核心對象之Series對象的創建 常用屬性和方法 3.2 pandas核心對象之DataFrame對象的創建 常用屬性和方法 3.3 DataFrame對象的列操作和行操作 3.4 DataFrame對象的索引和切片 3.5 DataFrame對象的布爾索引 3.6 數據的讀入與導出 3.7 groupby分組運算 3.8 數據合並與數據透視
第四章 數據可視化matplotlib seaborn pyecharts
4.1 包括常用圖形的繪制,略
第五章 實戰案列
5.1 拉勾網數據分析相關職位分析 5.2 boss直聘數據分析相關職位分析 5.3 珍愛網女性用戶數據分析
第六章 機器學習
機器學習部分, 簡單的演算法會講手寫, 難的就用scikit-learn實現, 可能有小夥伴說, 這是調包俠乾的, 小哥哥!小姐姐!哪有那麼多公司, 那麼多人自己干寫演算法的, 有幾個人敢說他寫的演算法比scikit-learn寫得好? 再說了, 你是數據分析師, 這些是你的工具, 解決問題的!不是一天到晚拉格朗日對偶性!先來個機器學習介紹, 然後如下:
6.1 K近鄰演算法 6.2 Kmeans演算法 6.3 決策樹 階段案列:決策樹案列(保險行業) 6.4 線性回歸 嶺回歸 Lasso回歸 6.5 邏輯回歸 6.6 樸素貝葉斯 階段案列:推薦系統(電商玩具) 6.7 隨機森林 6.8 Adaboost 6.9 梯度提升樹GBDT 6.10 極端梯度提升樹Xgboost 6.11 支持向量機SVM 6.12 神經網路 階段案例:Xgboost案例
------------------------------本節內容-----------------------------------------
python語言概述
在說python之前, 我們還是先來看看計算機軟硬體的發展歷史。
1 計算機硬體的發展歷史
第一代計算機-電子管計算機(1946-1957)
無論如何,一項技術的突破必然伴隨著其他行業的突破,簡而言之,電子計算機的出現,前提必須有電子技術的進步,否則一切都是空談!下面是我列舉出計算機硬體的發展過程中, 一些比較重要的事件。
1906年, 美國的Lee De Forest 發明了電子管。在這之前造出數字電子計算機是不可能的。這為電子計算機的發 展奠定了基礎。
1924年2月, 一個具有劃時代意義的公司成立,IBM。
1935年, IBM推出IBM 601機。 這是一台能在一秒鍾算出乘法的穿孔卡片計算機。這台機器無論在自然科學還是在商業意義上都具有重要的地位。大約造了1500台。
1937年, 英國劍橋大學的Alan M. Turing (1912-1954)出版了他的論文 ,並提出了被後人稱之為"圖靈機"的數學模型。
1937年, 美國貝爾試驗室的George Stibitz展示了用繼電器表示二進制的裝置。盡管僅僅是個展示品,但卻是世界上第一台二進制電子計算機。
1941年, Atanasoff和學生Berry完成了能解線性代數方程的計算機,取名叫"ABC"(Atanasoff-Berry Computer),用電容作存儲器,用穿孔卡片作輔助存儲器,那些孔實際上是"燒"上的。 時鍾頻率是60HZ,完成一次加法運算用時一秒。這就是ABC計算機。
1946年, 美國賓夕法尼亞大學,第一台通用電子計算機ENIAC (Electronic Numerical Integrator 和 Computer)誕生, 總工程師埃克特在當時年僅25歲。
這時的計算機的基本線路是採用電子管結構,程序從人工手編的 機器指令程序(0 1),過渡到符號語言(匯編),電子管計算機是計算工具革命性發展的開始,它所採用的進位制與程序存貯等基本技術思想,奠定了現代電子計算機技術基礎。以馮·諾依曼為代表。
第二代計算機——晶體管計算機(時間1957~1964)
電子管時代的計算機盡管已經步入了現代計算機的范疇,但其體積之大、能耗之高、故障之多、價格之貴大大制約了它的普及應用。直到晶體管被發明出來,電子計算機才找到了騰飛的起點,一發而不可收……
20世紀50年代中期,晶體管的出現使計算機生產技術得到了根本性的發展,由晶體管代替電子管作為計算機的基礎器件,用 磁芯或磁鼓作存儲器,在整體性能上,比第一代計算機有了很大的提高。
第三代計算機——中小規模集成電路計算機(時間1964~1971)
20世紀60年代中期, 計算機發展歷程隨著半導體工藝的發展,成功製造了集成電路。中小規模集成電路成為計算機的主要部件,主存儲器也漸漸過渡到 半導體存儲器,使計算機的體積更小,大大降低了計算機計算時的功耗,由於減少了 焊點和 接插件,進一步提高了計算機的可靠性。
第四代計算機——大規模和超大規模集成電路計算機(時間1971~至今)
隨著大規模集成電路的成功製作並用於計算機硬體生產過程,計算機的體積進一步縮小,性能進一步提高。集成更高的大容量半導體存儲器作為內存儲器,發展了並行技術和多機系統,出現了 精簡指令集計算機(RISC),軟體系統工程化、理論化,程序設計自動化。微型計算機在社會上的應用范圍進一步擴大,幾乎所有領域都能看到計算機的「身影」。
第五代計算機——泛指具有人工智慧的計算機(至今~未來)
目前還沒有明確地定義
2 簡述計算機軟體的發展歷史
編程語言的發展
計算機軟體系統的發展,也伴隨著編程語言的發展。計算機程序設計語言的發展,經歷了從機器語言、匯編語言到高級語言的歷程。
機器語言:簡單點說,機器本身也只認識0和1,電路無非就只有通和斷兩種狀態,對應的二進制就是二進制的1和1。
匯編語言:匯編語言只是把一些特殊的二進制用特殊的符號表示,例如,機器要傳送一個數據,假設「傳送」這個指令對應的機器碼是000101,則人們把000101用一個特殊符號,比如mov來表示,當人們要用這個指令時用mov就行,但是mov的本質還是000101,沒有脫離硬體的范圍,有可能這個指令不能在其他機器上用。
高級語言:高級語言完全脫離了硬體范疇,所有的語法更貼近人類的自然語言,人們只需要清楚高級語言的語法,寫出程序就行了,剩下的交給編譯器或者解釋器去編譯或者解釋成機器語言就行了,看,這樣就完全脫離了硬體的范疇,大大提高了程序的開發效率。接下來我們就來看看高級語言的發展,高級語言非常多,我們主要看看比較經典的幾個。
高級語言的發展
B語言與Unix
20世紀60年代,貝爾實驗室的研究員Ken Thompson(肯·湯普森)發明了B語言,並使用B編了個游戲 - Space Travel,他想玩自己這個游戲,所以他背著老闆找到了台空閑的機器 - PDP-7,但是這台機器沒有操作系統,於是Thompson著手為PDP-7開發操作系統,後來這個OS被命名為 - UNIX。
C語言
1971年,Ken Thompson(肯·湯普森)的同事D.M.Ritchie(DM里奇),也很想玩Space Travel,所以加入了Ken Thompson,合作開發UNIX,他的主要工作是改進Thompson的B語言。最終,在1972年這個新語言被稱為C,取BCPL的第二個字母,也是B的下一個字母。
C語言和Unix
1973年,C主體完成。Ken Thompson和D.M.Ritchie迫不及待的開始用C語言完全重寫了UNIX。此時編程的樂趣已經使他們完全忘記了那個「Space Travel」,一門心思的投入到了UNIX和C語言的開發中。自此,C語言和UNIX相輔相成的發展至今。
類C語言起源、歷史
C++(C plus plus Programming Language) - 1983
還是貝爾實驗室的人,Bjarne Stroustrup(本賈尼·斯特勞斯特盧普) 在C語言的基礎上推出了C++,它擴充和完善了C語言,特別是在面向對象編程方面。一定程度上克服了C語言編寫大型程序時的不足。
Python (Python Programming Language)--1991
1989年聖誕節期間,Guido van Rossum 在阿姆斯特丹,Guido van Rossum為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,做為ABC語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是因為他是一個叫Monty Python的喜劇團體的愛好者。第一個Python的版本發布於1991年。
Java(Java Programming Language) - 1995
Sun公司的Patrick Naughton的工作小組研發了Java語言,主要成員是James Gosling(詹姆斯·高斯林)
C(C Sharp Programming Language) - 2000
Microsoft公司的Anders Hejlsberg(安德斯·海爾斯伯格)發明了C,他也是Delphi語言之父。
當然現在還有一些新語言,比如2009年Google的go語言,以及麻省理工的julia等。
3 為什麼是Python
Python有哪些優點
1 語法簡單 漂亮:我們可以說Python是簡約的語言,非常易於讀寫。在遇到問題時,我們可以把更多的注意力放在問題本身上,而不用花費太多精力在程序語言、語法上。
2 豐富而免費的庫:Python社區創造了各種各樣的Python庫。在他們的幫助下,你可以管理文檔,執行單元測試、資料庫、web瀏覽器、電子郵件、密碼學、圖形用戶界面和更多的東西。所有東西包括在標准庫,然而,除了它,還有很多其他的庫。
3 開源:Python是免費開源的。這意味著我們不用花錢,就可以共享、復制和交換它,這也幫助Python形成了豐富的社區資源,使其更加完善,技術發展更快。
4 Python既支持面向過程,也支持面向對象編程。在面向過程編程中,程序員復用代碼,在面向對象編程中,使用基於數據和函數的對象。盡管面向對象的程序語言通常十分復雜,Python卻設法保持簡潔。
5 Python兼容眾多平台,所以開發者不會遇到使用其他語言時常會遇到的困擾。
Python有哪些作用
Python是什麼都能做,但是我們學的是數據分析,我們看看在數據分析領域Python能做什麼。
數據採集:以Scrapy 為代表的各類方式的爬蟲
數據鏈接:Python有大量各類資料庫的第三方包,方便快速的實現增刪改查
數據清洗:Numpy、Pandas,結構化和非結構化的數據清洗及數據規整化的利器
數據分析:Scikit-Learn、Scipy,統計分析,科學計算、建模等
數據可視化:Matplotlib、Seaborn等等大量各類可視化的庫
所以說總結, 為什麼數據科學選的是python, 最重要就是兩個原因:
1 語法簡單漂亮
2 大量豐富免費的第三方庫
4. 如何自學編程python
首先先了解Python語言的四大發展方向。目前Python的主要方向有web後端開發、大數據分析網路爬蟲和人工智慧,當然如果再細分的話還有自動化測試、運維等方向。
在學習Python的基礎語法時,並不需要太多的基礎,基本只要熟練使用電腦日常功能並對Python感興趣就可以了,但如果想要在人工智慧領域方向發展的話,線性代數、概率、統計等高等數學知識基本是必需的,原因在於這些知識能夠讓你的邏輯更加清晰,在編程過程中有更強的思路。
分享一個千鋒Python的學習大綱給你
第一階段 - Python 數據科學
Python 基礎語法
入門及環境安裝 、基本語法與數據類型、控制語句、錯誤及異常、錯誤處理方法、異常處理方法 、常用內置函數 、函數創建與使用、Python 高級特性、高級函數、Python 模塊、PythonIO 操作 、日期與時間 、類與面向對象 、Python 連接資料庫
Python 數據清洗
數字化 Python 模塊Numpy、數據分析利器Pandas、Pandas 基本操作、Pandas 高級操作
Python 數據可視化
數據可視化基礎、MLlib(RDD-Base API)機器學習、MatPlotlib 繪圖進階、高級繪圖工具
第二階段 - 商業數據可視化
Excel 業務分析
Excel 基礎技能、Excel 公式函數、圖表可視化、人力 & 財務分析案例、商業數據分析方法、商業數據分析報告
Mysql 資料庫
Mysql 基礎操作(一)、Mysql 基礎操作(二)、Mysql 中級操作、Mysql 高級操作、電商數據處理案例
PowerBI
初級商業智能應用 (PowerQuery)、初級商業智能應用 (PowerPivot)、初級商業智能應用案例、存儲過程、PowerBI Desktop 案例、PowerBI Query 案例
統計學基礎
微積分、線性代數基礎、統計基礎
Tableau
Tableau 基本操作、Tableau 繪圖、Tableau 數據分析、Tableau 流量分析
SPSS
客戶畫像、客戶價值模型、神經網路、決策樹、時間序列
第三階段 - Python 機器學習
Python 統計分析
數據准備、一元線性回歸、多元線性回歸、一般 logistic 回歸、ogistic 回歸與修正
Python 機器學習基礎
機器學習入門、KNN 講義、模型評估方法、模型優化方法、Kmeans、DBSCAN、決策樹演算法實戰
Python 機器學習中級
線性回歸、模型優化方法、邏輯回歸、樸素貝葉斯、關聯規則、協同過濾、推薦系統案例
Python 機器學習高級
集成演算法 - 隨機森林、集成演算法 -AdaBoost、數據處理和特徵工程、SVM、神經網路、XGBoost
第四階段 - 項目實戰
電商市場數據挖掘項目實戰
項目背景 & 業務邏輯 、指定分析策略 、方法實現與結果 、營銷活動設計及結果評價 、撰寫數據分析報告
金融風險信用評估項目實戰
項目背景 & 業務邏輯 、建模准備 、數據清洗 、模型訓練 、模型評估 、模型部署與更新
第五階段 - 數據採集
爬蟲類庫解析 、數據解析 、動態網頁提取 、驗證碼、IP 池 、多線程爬蟲 、反爬應對措施 、scrapy 框架
第六階段 - 企業課
團隊戶外拓展訓練 、企業合作項目課程 、管理課程 、溝通表達訓練 、職業素養課程
以上就是零基礎Python學習路線的所有內容,希望對大家的學習有所幫助。
5. python怎麼學習
對於很多想學習Python的小夥伴來說,不知道從何開始,小蝸這里整理了一份Python全棧開發的學習路線,大家可按照以下這份大綱來進行學習:
第一階段:專業核心基礎
階段目標:
1. 熟練掌握Python的開發環境與編程核心知識
2. 熟練運用Python面向對象知識進行程序開發
3. 對Python的核心庫和組件有深入理解
4. 熟練應用SQL語句進行資料庫常用操作
5. 熟練運用Linux操作系統命令及環境配置
6. 熟練使用MySQL,掌握資料庫高級操作
7. 能綜合運用所學知識完成項目
知識點:
Python編程基礎、Python面向對象、Python高級進階、MySQL資料庫、Linux操作系統。
1、Python編程基礎,語法規則,函數與參數,數據類型,模塊與包,文件IO,培養扎實的Python編程基本功,同時對Python核心對象和庫的編程有熟練的運用。
2、Python面向對象,核心對象,異常處理,多線程,網路編程,深入理解面向對象編程,異常處理機制,多線程原理,網路協議知識,並熟練運用於項目中。
3、類的原理,MetaClass,下劃線的特殊方法,遞歸,魔術方法,反射,迭代器,裝飾器,UnitTest,Mock。深入理解面向對象底層原理,掌握Python開發高級進階技術,理解單元測試技術。
4、資料庫知識,範式,MySQL配置,命令,建庫建表,數據的增刪改查,約束,視圖,存儲過程,函數,觸發器,事務,游標,PDBC,深入理解資料庫管理系統通用知識及MySQL資料庫的使用與管理。為Python後台開發打下堅實基礎。
5、Linux安裝配置,文件目錄操作,VI命令,管理,用戶與許可權,環境配置,Docker,Shell編程Linux作為一個主流的伺服器操作系統,是每一個開發工程師必須掌握的重點技術,並且能夠熟練運用。
第二階段:PythonWEB開發
階段目標:
1. 熟練掌握Web前端開發技術,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系統中的前後端交互過程與通信協議
3. 熟練運用Web前端和Django和Flask等主流框架完成Web系統開發
4. 深入理解網路協議,分布式,PDBC,AJAX,JSON等知識
5. 能夠運用所學知識開發一個MiniWeb框架,掌握框架實現原理
6. 使用Web開發框架實現貫穿項目
知識點:
Web前端編程、Web前端高級、Django開發框架、Flask開發框架、Web開發項目實戰。
1、Web頁面元素,布局,CSS樣式,盒模型,JavaScript,JQuery與Bootstrap掌握前端開發技術,掌握JQuery與BootStrap前端開發框架,完成頁面布局與美化。
2、前端開發框架Vue,JSON數據,網路通信協議,Web伺服器與前端交互熟練使用Vue框架,深入理解HTTP網路協議,熟練使用Swagger,AJAX技術實現前後端交互。
3、自定義Web開發框架,Django框架的基本使用,Model屬性及後端配置,Cookie與Session,模板Templates,ORM數據模型,Redis二級緩存,RESTful,MVC模型掌握Django框架常用API,整合前端技術,開發完整的WEB系統和框架。
4、Flask安裝配置,App對象的初始化和配置,視圖函數的路由,Request對象,Abort函數,自定義錯誤,視圖函數的返回值,Flask上下文和請求鉤子,模板,資料庫擴展包Flask-Sqlalchemy,資料庫遷移擴展包Flask-Migrate,郵件擴展包Flask-Mail。掌握Flask框架的常用API,與Django框架的異同,並能獨立開發完整的WEB系統開發。
第三階段:爬蟲與數據分析
階段目標:
1. 熟練掌握爬蟲運行原理及常見網路抓包工具使用,能夠對HTTP及HTTPS協議進行抓包分析
2. 熟練掌握各種常見的網頁結構解析庫對抓取結果進行解析和提取
3. 熟練掌握各種常見反爬機制及應對策略,能夠針對常見的反爬措施進行處理
4. 熟練使用商業爬蟲框架Scrapy編寫大型網路爬蟲進行分布式內容爬取
5. 熟練掌握數據分析相關概念及工作流程
6. 熟練掌握主流數據分析工具Numpy、Pandas和Matplotlib的使用
7. 熟練掌握數據清洗、整理、格式轉換、數據分析報告編寫
8. 能夠綜合利用爬蟲爬取豆瓣網電影評論數據並完成數據分析全流程項目實戰
知識點:
網路爬蟲開發、數據分析之Numpy、數據分析之Pandas。
1、爬蟲頁面爬取原理、爬取流程、頁面解析工具LXML,Beautifulfoup,正則表達式,代理池編寫和架構、常見反爬措施及解決方案、爬蟲框架結構、商業爬蟲框架Scrapy,基於對爬蟲爬取原理、網站數據爬取流程及網路協議的分析和了解,掌握網頁解析工具的使用,能夠靈活應對大部分網站的反爬策略,具備獨立完成爬蟲框架的編寫能力和熟練應用大型商業爬蟲框架編寫分布式爬蟲的能力。
2、Numpy中的ndarray數據結構特點、numpy所支持的數據類型、自帶的數組創建方法、算術運算符、矩陣積、自增和自減、通用函數和聚合函數、切片索引、ndarray的向量化和廣播機制,熟悉數據分析三大利器之一Numpy的常見使用,熟悉ndarray數據結構的特點和常見操作,掌握針對不同維度的ndarray數組的分片、索引、矩陣運算等操作。
3、Pandas裡面的三大數據結構,包括Dataframe、Series和Index對象的基本概念和使用,索引對象的更換及刪除索引、算術和數據對齊方法,數據清洗和數據規整、結構轉換,熟悉數據分析三大利器之一Pandas的常見使用,熟悉Pandas中三大數據對象的使用方法,能夠使用Pandas完成數據分析中最重要的數據清洗、格式轉換和數據規整工作、Pandas對文件的讀取和操作方法。
4、matplotlib三層結構體系、各種常見圖表類型折線圖、柱狀圖、堆積柱狀圖、餅圖的繪制、圖例、文本、標線的添加、可視化文件的保存,熟悉數據分析三大利器之一Matplotlib的常見使用,熟悉Matplotlib的三層結構,能夠熟練使用Matplotlib繪制各種常見的數據分析圖表。能夠綜合利用課程中所講的各種數據分析和可視化工具完成股票市場數據分析和預測、共享單車用戶群里數據分析、全球幸福指數數據分析等項目的全程實戰。
第四階段:機器學習與人工智慧
階段目標:
1. 理解機器學習相關的基本概念及系統處理流程
2. 能夠熟練應用各種常見的機器學習模型解決監督學習和非監督學習訓練和測試問題,解決回歸、分類問題
3. 熟練掌握常見的分類演算法和回歸演算法模型,如KNN、決策樹、隨機森林、K-Means等
4. 掌握卷積神經網路對圖像識別、自然語言識別問題的處理方式,熟悉深度學習框架TF裡面的張量、會話、梯度優化模型等
5. 掌握深度學習卷積神經網路運行機制,能夠自定義卷積層、池化層、FC層完成圖像識別、手寫字體識別、驗證碼識別等常規深度學習實戰項目
知識點:
1、機器學習常見演算法、sklearn數據集的使用、字典特徵抽取、文本特徵抽取、歸一化、標准化、數據主成分分析PCA、KNN演算法、決策樹模型、隨機森林、線性回歸及邏輯回歸模型和演算法。熟悉機器學習相關基礎概念,熟練掌握機器學習基本工作流程,熟悉特徵工程、能夠使用各種常見機器學習演算法模型解決分類、回歸、聚類等問題。
2、Tensorflow相關的基本概念,TF數據流圖、會話、張量、tensorboard可視化、張量修改、TF文件讀取、tensorflow playround使用、神經網路結構、卷積計算、激活函數計算、池化層設計,掌握機器學習和深度學習之前的區別和練習,熟練掌握深度學習基本工作流程,熟練掌握神經網路的結構層次及特點,掌握張量、圖結構、OP對象等的使用,熟悉輸入層、卷積層、池化層和全連接層的設計,完成驗證碼識別、圖像識別、手寫輸入識別等常見深度學習項目全程實戰。
6. python是什麼樣的編程語言
Python是一個高層次的結合了解釋性、編譯性、互動性和面向對象的腳本語言;
Python的設計具有很強的可讀性,相比其他語言經常使用英文關鍵字,其他語言的一些標點符號,它具有比其他語言更有特色語法結構;
Python是一種解釋型語言,意味著開發過程中沒有了編譯這個環節,類似於PHP和Perl語言;
Python是互動式語言,意味著你可以在一個Python提示符>>>後直接執行代碼;
Python是面向對象語言,意味著Python支持面向對象的風格或代碼封裝在對象的編程技術;
Python是初學者首選的語言,Python對初級程序員而言,是一種偉大的編程語言,它支持廣泛的應用程序開發,從簡單的文字處理到WWW瀏覽器再到游戲,無所不能。
7. 編程語言python是用來干什麼的
python的作用:
1、系統編程:提供API(ApplicationProgramming
Interface應用程序編程介面),能方便進行系統維護和管理,Linux下標志性語言之一,是很多系統管理員理想的編程工具。
2、圖形處理:有PIL、Tkinter等圖形庫支持,能方便進行圖形處理。
3、數學處理:NumPy擴展提供大量與許多標准數學庫的介面。
4、文本處理:python提供的re模塊能支持正則表達式,還提供SGML,XML分析模塊,許多程序員利用python進行XML程序的開發。
5、資料庫編程:程序員可通過遵循PythonDB-API(資料庫應用程序編程介面)規范的模塊與MicrosoftSQL Server,Oracle,Sybase,DB2,MySQL、SQLite等資料庫通信。python自帶有一個Gadfly模塊,提供了一個完整的SQL環境。
(7)python編程小姐擴展閱讀:
python中文就是蟒蛇的意思。在計算機中,它是一種編程語言。Python(英語發音:/ˈpaɪθən/),是一種面向對象、解釋型計算機程序設計語言,由GuidovanRossum於1989年底發明,第一個公開發行版發行於1991年。Python語法簡潔而清晰,具有豐富和強大的類庫。
它常被昵稱為膠水語言,它能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。常見的一種應用情形是,使用Python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中有特別要求的部分,用更合適的語言改寫。
比如3D游戲中的圖形渲染模塊,性能要求特別高,就可以用C++重寫。1發展歷程編輯自從20世紀90年代初Python語言誕生至今,它逐漸被廣泛應用於處理系統管理任務和Web編程。Python已經成為最受歡迎的程序設計語言之一。
8. Python 在編程語言中是什麼地位為什麼很多大學不教 Python
python的地位很高,目前是世界第5大編程語言。。但我覺得大學不教python,其實是正確的。
Python在誕生之初,只是用來在Linux上給Perl和shell做銜接用的「膠水」,而今天已經成為了主流的編程語言,能獲得今天的地位,當然具備諸多優勢。。。比如數學運算相關的各種庫,爬蟲,等等。。。但這都不是導致Python流行的最根本原因。
有沒有比Python運算更強的語言?多得是
有沒有比Python爬蟲效率更高的語言?也不少
所以其實平日里隨口道來的種種優勢,並不是不可替代的。。這些優勢,很多語言都具備。就比如perl,erlang,Julia等語言,其實用來做運算或爬蟲比Python更強,但為什麼這些語言卻流行不起來?
說到底,Python成功的秘訣只有一條,其實就是在功能基本夠用的前提下,比其他語言簡單。而比Python簡單的語言,功能又不夠全面,比如Lua,Javascript,Ruby這些語言比Python更簡單,但往往只適合一兩個領域的工作,而無法面面俱到。
Python可以提供的這些功能,對於非專業程序員來講,已經顯得非常強大了。。但對於專業程序員來說,Python最大的作用,其實也只是用來「偷懶」而已。因為相比JAVA或C#這種工業級的編程語言來講,Python除了入門簡單之外,並無任何優勢可言。而Python的動態語言特性、不利於維護等缺點,成為了限制它邁向深層開發的重大缺陷。
而如果熟練掌握JAVA或C#中的任何一門,想利用閑暇之餘學習一下Python,看幾個案例便可以入門,幾乎不需要專門學習。
如果你並不以成為專業程序員做為目標,那麼以Python為主,是可以的。但若想靠編程養家糊口,靜態語言才是重中之重。
但如果是計算機專業的話,僅僅學Python,似乎就有點對不起「科班出身」的稱號了。。。。學生們花著昂貴的學費,消耗四年光陰,卻只學個Python,豈不是誤人子弟?
就像你若報考攝影專業,老師應該教你使用單反,而不是教你使用手機攝像頭。