① python如何管理內存
Python中的內存管理是從三個方面來進行的,一對象的引用計數機制,二垃圾回收機制,三內存池機制
一、對象的引用計數機制
Python內部使用引用計數,來保持追蹤內存中的對象,所有對象都有引用計數。
引用計數增加的情況:
1,一個對象分配一個新名稱
2,將其放入一個容器中(如列表、元組或字典)
引用計數減少的情況:
1,使用del語句對對象別名顯示的銷毀
2,引用超出作用域或被重新賦值
sys.getrefcount( )函數可以獲得對象的當前引用計數
多數情況下,引用計數比你猜測得要大得多。對於不可變數據(如數字和字元串),解釋器會在程序的不同部分共享內存,以便節約內存。
二、垃圾回收
1,當一個對象的引用計數歸零時,它將被垃圾收集機制處理掉。
2,當兩個對象a和b相互引用時,del語句可以減少a和b的引用計數,並銷毀用於引用底層對象的名稱。然而由於每個對象都包含一個對其他對象的應用,因此引用計數不會歸零,對象也不會銷毀。(從而導致內存泄露)。為解決這一問題,解釋器會定期執行一個循環檢測器,搜索不可訪問對象的循環並刪除它們。
三、內存池機制
Python提供了對內存的垃圾收集機制,但是它將不用的內存放到內存池而不是返回給操作系統。
1,Pymalloc機制。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
2,Python中所有小於256個位元組的對象都使用pymalloc實現的分配器,而大的對象則使用系統的malloc。
3,對於Python對象,如整數,浮點數和List,都有其獨立的私有內存池,對象間不共享他們的內存池。也就是說如果你分配又釋放了大量的整數,用於緩存這些整數的內存就不能再分配給浮點數。
② python如何控制內存
python控制內存的方法:
一、對象的引用計數機制
二、垃圾回收機制
三、內存池機制
一、對象的引用計數機制
Python內部使用引用計數,來保持追蹤內存中的對象,所有對象都有引用計數。
引用計數增加的情況:
1、一個對象分配一個新名稱
2、將其放入一個容器中(如列表、元組或字典)
引用計數減少的情況:
1、使用del語句對對象別名顯示的銷毀
2、引用超出作用域或被重新賦值 sys.getrefcount( )函數可以獲得對象的當前引用計數
多數情況下,引用計數比你猜測得要大得多。對於不可變數據(如數字和字元串),解釋器會在程序的不同部分共享內存,以便節約內存。
二、垃圾回收
1、當一個對象的引用計數歸零時,它將被垃圾收集機制處理掉。
2、當兩個對象a和b相互引用時,del語句可以減少a和b的引用計數,並銷毀用於引用底層對象的名稱。然而由於每個對象都包含一個對其他對象的應用,因此引用計數不會歸零,對象也不會銷毀。(從而導致內存泄露)。為解決這一問題,解釋器會定期執行一個循環檢測器,搜索不可訪問對象的循環並刪除它們。
三、內存池機制
Python提供了對內存的垃圾收集機制,但是它將不用的內存放到內存池而不是返回給操作系統。
1、Pymalloc機制。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
2、Python中所有小於256個位元組的對象都使用pymalloc實現的分配器,而大的對象則使用系統的malloc。
3、對於Python對象,如整數,浮點數和List,都有其獨立的私有內存池,對象間不共享他們的內存池。也就是說如果你分配又釋放了大量的整數,用於緩存這些整數的內存就不能再分配給浮點數。
更多Python知識請關注Python視頻教程欄目。
③ python怎麼進行內存管理的
Python作為一種動態類型的語言,其對象和引用分離。這與曾經的面向過程語言有很大的區別。為了有效的釋放內存,Python內置了垃圾回收的支持。Python採取了一種相對簡單的垃圾回收機制,即引用計數,並因此需要解決孤立引用環的問題。Python與其它語言既有共通性,又有特別的地方。對該內存管理機制的理解,是提高Python性能的重要一步。
④ python的內存管理機制
論壇
活動
招聘
專題
打開CSDN APP
Copyright © 1999-2020, CSDN.NET, All Rights Reserved
登錄
XCCS_澍
關注
Python 的內存管理機制及調優手段? 原創
2018-08-05 06:50:53
XCCS_澍
碼齡7年
關注
內存管理機制:引用計數、垃圾回收、內存池。
一、引用計數:
引用計數是一種非常高效的內存管理手段, 當一個 Python 對象被引用時其引用計數增加 1, 當其不再被一個變數引用時則計數減 1. 當引用計數等於 0 時對象被刪除。
二、垃圾回收 :
1. 引用計數
引用計數也是一種垃圾收集機制,而且也是一種最直觀,最簡單的垃圾收集技術。當 Python 的某個對象的引用計數降為 0 時,說明沒有任何引用指向該對象,該對象就成為要被回收的垃圾了。比如某個新建對象,它被分配給某個引用,對象的引用計數變為 1。如果引用被刪除,對象的引用計數為 0,那麼該對象就可以被垃圾回收。不過如果出現循環引用的話,引用計數機制就不再起有效的作用了
2. 標記清除
如果兩個對象的引用計數都為 1,但是僅僅存在他們之間的循環引用,那麼這兩個對象都是需要被回收的,也就是說,它們的引用計數雖然表現為非 0,但實際上有效的引用計數為 0。所以先將循環引用摘掉,就會得出這兩個對象的有效計數。
3. 分代回收
從前面「標記-清除」這樣的垃圾收集機制來看,這種垃圾收集機制所帶來的額外操作實際上與系統中總的內存塊的數量是相關的,當需要回收的內存塊越多時,垃圾檢測帶來的額外操作就越多,而垃圾回收帶來的額外操作就越少;反之,當需回收的內存塊越少時,垃圾檢測就將比垃圾回收帶來更少的額外操作。
⑤ Python 的內存管理機制
Python採用自動內存管理,即Python會自動進行垃圾回收,不需要像C、C++語言一樣需要程序員手動釋放內存,手動釋放可以做到實時性,但是存在內存泄露、空指針等風險。
Python自動垃圾回收也有自己的優點和缺點:優點:
缺點:
Python的垃圾回收機制採用 以引用計數法為主,分代回收為輔 的策略。
先聊引用計數法,Python中每個對象都有一個核心的結構體,如下
一個對象被創建時,引用計數值為1,當一個變數引用一個對象時,該對象的引用計數ob_refcnt就加一,當一個變數不再引用一個對象時,該對象的引用計數ob_refcnt就減一,Python判斷是否回收一個對象,會將該對象的引用計數值ob_refcnt減一判斷結果是否等於0,如果等於0就回收,如果不等於0就不回收,如下:
一個對象在以下三種情況下引用計數會增加:
一個對象在以下三種情況引用計數會減少:
驗證案例:
運行結果:
事實上,關於垃圾回收的測試,最好在終端環境下測試,比如整數257,它在PyCharm中用下面的測試代碼列印出來的結果是4,而如果在終端環境下列印出來的結果是2。這是因為終端代表的是原始的Python環境,而PyCharm等IDE做了一些特殊處理,在Python原始環境中,整數緩存的范圍是在 [-5, 256] 的雙閉合區間內,而PyCharm做了特殊處理之後,PyCharm整數緩存的范圍變成了 [-5, 無窮大],但我們必須以終端的測試結果為主,因為它代表的是原始的Python環境,並且代碼最終也都是要發布到終端運行的。
好,那麼回到終端,我們來看兩種特殊情況
前面學習過了,整數緩存的范圍是在 [-5, 256] 之間,這些整數對象在程序載入完全就已經駐留在內存之中,並且直到程序結束退出才會釋放佔有的內存,測試案例如下:
如果字元串的內容只由字母、數字、下劃線構成,那麼它只會創建一個對象駐留在內存中,否則,每創建一次都是一個新的對象。
引用計數法有缺陷,它無法解決循環引用問題,即A對象引用了B對象,B對象又引用了A對象,這種情況下,A、B兩個對象都無法通過引用計數法來進行回收,有一種解決方法是程序運行結束退出時進行回收,代碼如下:
前面講過,Python垃圾回收機制的策略是 以引用計數法為主,以分代回收為輔 。分代回收就是為了解決循環引用問題的。
Python採用分代來管理對象的生命周期:第0代、第1代、第2代,當一個對象被創建時,會被分配到第一代,默認情況下,當第0代的對象達到700個時,就會對處於第0代的對象進行檢測和回收,將存在循環引用的對象釋放內存,經過垃圾回收後,第0代中存活的對象會被分配為第1代,同樣,當第1代的對象個數達到10個時,也會對第1代的對象進行檢測和回收,將存在循環引用的對象釋放內存,經過垃圾回收後,第1代中存活的對象會被分配為第2代,同樣,當第二代的對象個數達到10個時,也會對第2代的對象進行檢測和回收,將存在循環引用的對象釋放內存。Python就是通過這樣一種策略來解決對象之間的循環引用問題的。
測試案例:
運行結果:
如上面的運行結果,當第一代中對象的個數達到699個即將突破臨界值700時(在列印699之前就已經回收了,所以看不到698和699)進行了垃圾回收,回收掉了循環引用的對象。
第一代、第二代、第三代分代回收都是有臨界值的,這個臨界值可以通過調用 gc.get_threshold 方法查看,如下:
當然,如果對默認臨界值不滿意,也可以調用 gc.set_threshold 方法來自定義臨界值,如下:
最後,簡單列出兩個gc的其它方法,了解一下,但禁止在程序代碼中使用
以上就是對Python垃圾回收的簡單介紹,當然,深入研究肯定不止這些內容,目前,了解到這個程度也足夠了。
⑥ Python是怎樣管理內存的
Python中的內存管理是由Python私有堆空間管理,所以Python對象和數據結構都位於私有堆中,程序員無法訪問此私有堆,Python解釋器負責處理這個問題。
Python對象的堆空間分配由Python的內存管理器完成,核心API提供了一些程序員編寫代碼的工具。
Python還有一個內存的垃圾收集器,可以回收所有未使用的內存,並使其可用於堆空間。
⑦ Python如何管理內存
Python對內存的管理要從三個方面來說:1.對象的引用計數機制、2.垃圾回收機制、 3.內存池機制
⑧ python如何進行內存管理
Python的內存管理主要有三種機制:引用計數機制,垃圾回收機制和內存池機制。
引用計數機制
簡介
python內部使用引用計數,來保持追蹤內存中的對象,Python內部記錄了對象有多少個引用,即引用計數,當對象被創建時就創建了一個引用計數,當對象不再需要時,這個對象的引用計數為0時,它被垃圾回收。
特性
1.當給一個對象分配一個新名稱或者將一個對象放入一個容器(列表、元組或字典)時,該對象的引用計數都會增加。
2.當使用del對對象顯示銷毀或者引用超出作用於或者被重新賦值時,該對象的引用計數就會減少。
3.可以使用sys.getrefcount()函數來獲取對象的當前引用計數。多數情況下,引用計數要比我們猜測的大的多。對於不可變數據(數字和字元串),解釋器會在程序的不同部分共享內存,以便節約內存。
垃圾回收機制
特性
1.當內存中有不再使用的部分時,垃圾收集器就會把他們清理掉。它會去檢查那些引用計數為0的對象,然後清除其在內存的空間。當然除了引用計數為0的會被清除,還有一種情況也會被垃圾收集器清掉:當兩個對象相互引用時,他們本身其他的引用已經為0了。
2.垃圾回收機制還有一個循環垃圾回收器, 確保釋放循環引用對象(a引用b, b引用a, 導致其引用計數永遠不為0)。
內存池機制
簡介
在Python中,許多時候申請的內存都是小塊的內存,這些小塊內存在申請後,很快又會被釋放,由於這些內存的申請並不是為了創建對象,所以並沒有對象一級的內存池機制。這就意味著Python在運行期間會大量地執行malloc和free的操作,頻繁地在用戶態和核心態之間進行切換,這將嚴重影響Python的執行效率。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
內存池概念
內存池的概念就是預先在內存中申請一定數量的,大小相等的內存塊留作備用,當有新的內存需求時,就先從內存池中分配內存給這個需求,不夠了之後再申請新的內存。這樣做最顯著的優勢就是能夠減少內存碎片,提升效率。內存池的實現方式有很多,性能和適用范圍也不一樣。
特性
1.Python提供了對內存的垃圾收集機制,但是它將不用的內存放到內存池而不是返回給操作系統。
2.Pymalloc機制。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
3.Python中所有小於256個位元組的對象都使用pymalloc實現的分配器,而大的對象則使用系統的 malloc。
4.對於Python對象,如整數,浮點數和List,都有其獨立的私有內存池,對象間不共享他們的內存池。也就是說如果你分配又釋放了大量的整數,用於緩存這些整數的內存就不能再分配給浮點數。
⑨ BAT面試題28:Python是如何進行內存管理的
Python的內存管理,一般從以下三個方面來說:
1)對象的引用計數機制(四增五減)
2)垃圾回收機制(手動自動,分代回收)
3)內存池機制(大m小p)
1)對象的引用計數機制
要保持追蹤內存中的對象,Python使用了引用計數這一簡單的技術。sys.getrefcount(a)可以查看a對象的引用計數,但是比正常計數大1,因為調用函數的時候傳入a,這會讓a的引用計數+1
2)垃圾回收機制
吃太多,總會變胖,Python也是這樣。當Python中的對象越來越多,它們將占據越來越大的內存。不過你不用太擔心Python的體形,它會在適當的時候「減肥」,啟動垃圾回收(garbage
collection),將沒用的對象清除
從基本原理上,當Python的某個對象的引用計數降為0時,說明沒有任何引用指向該對象,該對象就成為要被回收的垃圾了
比如某個新建對象,它被分配給某個引用,對象的引用計數變為1。如果引用被刪除,對象的引用計數為0,那麼該對象就可以被垃圾回收。
然而,減肥是個昂貴而費力的事情。垃圾回收時,Python不能進行其它的任務。頻繁的垃圾回收將大大降低Python的工作效率。如果內存中的對象不多,就沒有必要總啟動垃圾回收。
所以,Python只會在特定條件下,自動啟動垃圾回收。當Python運行時,會記錄其中分配對象(object
allocation)和取消分配對象(object deallocation)的次數。當兩者的差值高於某個閾值時,垃圾回收才會啟動。
我們可以通過gc模塊的get_threshold()方法,查看該閾值。
3)內存池機制
Python中有分為大內存和小內存:(256K為界限分大小內存)
1、大內存使用malloc進行分配
2、小內存使用內存池進行分配
python中的內存管理機制都有兩套實現,一套是針對小對象,就是大小小於256K時,pymalloc會在內存池中申請內存空間;當大於256K時,則會直接執行系統的malloc的行為來申請內存空間。