導航:首頁 > 編程語言 > python高級k線庫

python高級k線庫

發布時間:2022-10-29 20:27:35

python有把tick數據轉換成各周期k線的庫沒

執行sql後要 conn=mysql.connect(````) cur=conn.cursor() cur.execute(SQL) conn.commit() 這句很重要 cur.close() conn.close()

❷ 最受歡迎的 15 大 Python 庫有哪些

1、Pandas:是一個Python包,旨在通過「標記」和「關系」數據進行工作,簡單直觀。它設計用於快速簡單的數據操作、聚合和可視化,是數據整理的完美工具。
2、Numpy:是專門為Python中科學計算而設計的軟體集合,它為Python中的n維數組和矩陣的操作提供了大量有用的功能。該庫提供了NumPy數組類型的數學運算向量化,可以改善性能,從而加快執行速度。
3、SciPy:是一個工程和科學軟體庫,包含線性代數,優化,集成和統計的模塊。SciPy庫的主要功能是建立在NumPy上,通過其特定子模塊提供有效的數值常式,並作為數字積分、優化和其他常式。
4、Matplotlib:為輕松生成簡單而強大的可視化而量身定製,它使Python成為像MatLab或Mathematica這樣的科學工具的競爭對手。
5、Seaborn:主要關注統計模型的可視化(包括熱圖),Seaborn高度依賴於Matplotlib。
6、Bokeh:獨立於Matplotlib,主要焦點是交互性,它通過現代瀏覽器以數據驅動文檔的風格呈現。
7、Plotly:是一個基於Web用於構建可視化的工具箱,提供API給一些編程語言(Python在內)。
8、Scikits:是Scikits
Stack額外的軟體包,專為像圖像處理和機器學習輔助等特定功能而設計。它建立在SciPy之上,中集成了有質量的代碼和良好的文檔、簡單易用並且十分高效,是使用Python進行機器學習的實際行業標准。
9、Theano:是一個Python軟體包,它定義了與NumPy類似的多維數組,以及數學運算和表達式。此庫是被編譯的,可實現在所有架構上的高效運行。
10、TensorFlow:是數據流圖計算的開源庫,旨在滿足谷歌對訓練神經網路的高需求,並且是基於神經網路的機器學習系統DistBelief的繼任者,可以在大型數據集上快速訓練神經網路。
11、Keras:是一個用Python編寫的開源的庫,用於在高層的介面上構建神經網路。它簡單易懂,具有高級可擴展性。
12、NLTK:主要用於符號學和統計學自然語言處理(NLP) 的常見任務,旨在促進NLP及相關領域(語言學,認知科學人工智慧等)的教學和研究。
13、Gensim:是一個用於Python的開源庫,為有向量空間模型和主題模型的工作提供了使用工具。這個庫是為了高效處理大量文本而設計,不僅可以進行內存處理,還可以通過廣泛使用NumPy數據結構和SciPy操作來獲得更高的效率。

❸ Python量化教程:不得不學的K線圖「代碼復制可用」

不管是對量化分析師還是普通的投資者來說,K線圖(蠟燭圖)都是一種很經典、很重要的工具。在K線圖中,它會繪制每天的最高價、最低價、開盤價和收盤價,這對於我們理解股票的趨勢以及每天的多空對比很有幫助。

一般來說,我們會從各大券商平台獲取K線圖,但是這種情況下獲得的K線圖往往不能靈活調整,也不能適應復雜多變的生產需求。因此我們有必要學習一下如何使用Python繪制K線圖。

需要說明的是,這里mpl_finance是原來的matplotlib.finance,但是現在獨立出來了(而且好像沒什麼人維護更新了),我們將會使用它提供的方法來繪制K線圖;tushare是用來在線獲取股票數據的庫;matplotlib.ticker中有個FuncFormatter()方法可以幫助我們調整坐標軸;matplotlib.pylab.date2num可以幫助我們將日期數據進行必要的轉化。

我們以上證綜指18年9月份以來的行情為例。

我們先使用mpl_finance繪制一下,看看是否一切正常。

可以看到,所有的節假日包括周末,在這里都會顯示為空白,這對於我們圖形的連續性非常不友好,因此我們要解決掉他們。

可以看到,空白問題完美解決,這里我們解釋一下。由於matplotlib會將日期數據理解為 連續數據 ,而連續數據之間的間距是有意義的,所以非交易日即使沒有數據,在坐標軸上還是會體現出來。連續多少個非交易日,在坐標軸上就對應了多少個小格子,但這些小格子上方並沒有相應的蠟燭圖。

明白了它的原理,我們就可以對症下葯了。我們可以給橫坐標(日期)傳入連續的、固定間距的數據,先保證K線圖的繪制是連續的;然後生成一個保存有正確日期數據的列表,接下來,我們根據坐標軸上的數據去取對應的正確的日期,並替換為坐標軸上的標簽即可。

上邊format_date函數就是這個作用。由於前邊我們給dates列生成了從0開始的序列連續數據,因此我們可以直接把它當作索引,從真正的日期列表裡去取對應的數據。在這里我們要使用matplotlib.ticker.FuncFormattter()方法,它允許我們指定一個格式化坐標軸標簽的函數,在這個函數里,我們需要接受坐標軸的值以及位置,並返回自定義的標簽。

你學會了嗎?

當然,一個完整的K線圖到這里並沒有結束,後邊我們會考慮加入均線、成交量等元素,感興趣的同學歡迎關注哦!

❹ python用matplotlib畫K線

#-*-coding:utf-8-*-

importnumpyasnp
importpandasaspd
importmatplotlib.pyplotasplt

frommatplotlib.datesimportDateFormatter,WeekdayLocator,DayLocator,MONDAY
frommatplotlib.financeimportquotes_historical_yahoo_ohlc,candlestick_ohlc


#從雅虎財經獲取歷史行情
date1=(2017,1,1)
date2=(2017,4,30)
quotes=quotes_historical_yahoo_ohlc('600000.ss',date1,date2)
iflen(quotes)==0:
raiseSystemExit

#創建一個子圖
fig,ax=plt.subplots()
fig.subplots_adjust(bottom=0.2)

#設置主要刻度和顯示格式
mondays=WeekdayLocator(MONDAY)
mondaysFormatter=DateFormatter('%Y-%m-%d')
ax.xaxis.set_major_locator(mondays)
ax.xaxis.set_major_formatter(mondaysFormatter)

#設置次要刻度和顯示格式
alldays=DayLocator()
alldaysFormatter=DateFormatter('%d')
ax.xaxis.set_minor_locator(alldays)
#ax.xaxis.set_minor_formatter(alldaysFormatter)


#設置x軸為日期
ax.xaxis_date()
ax.autoscale_view()
#X軸刻度文字傾斜45度
plt.setp(plt.gca().get_xticklabels(),rotation=45,horizontalalignment='right')

candlestick_ohlc(ax,quotes,width=0.6,colorup='r',colordown='g')
ax.grid(True)
plt.title('600000')
plt.show()

❺ 如何用python做k線形態識別

K線形態識別是比較難的一個點,難在思路上,代碼都是其次。分享一下我的思路吧,通過api獲取了行情信息之後(一般都是pandas.DataFrame格式,基本上都包含ohlc和volume),那麼假如我需要識別十字星,那麼用df['open']==df['close']把其布爾值賦值給a, 然後df['high']>df['open']>df['low']賦值給b。然後
for i in range(len(df)):
df['outcome']=np.where(a+b==1, 1, 0)
df[df['outcome']==1]

這樣就能把所有的十字星給選出來了。

❻ python可視化神器——pyecharts庫

無意中從今日頭條中看到的一篇文章,可以生成簡單的圖表。據說一些大數據開發們也是經常用類似的圖表庫,畢竟有現成的,改造下就行,誰會去自己造輪子呢。

pyecharts是什麼?

pyecharts 是一個用於生成 Echarts 圖表的類庫。Echarts 是網路開源的一個數據可視化 JS 庫。用 Echarts 生成的圖可視化效果非常棒, pyecharts 是為了與 Python 進行對接,方便在 Python 中直接使用數據生成圖 。使用pyecharts可以生成獨立的網頁,也可以在flask、django中集成使用。

安裝很簡單:pip install pyecharts

如需使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可,同時兼容 Python2 和 Python3 的 Jupyter Notebook 環境。所有圖表均可正常顯示,與瀏覽器一致的交互體驗,簡直不要太強大。

參考自pyecharts官方文檔: http://pyecharts.org

首先開始來繪制你的第一個圖表

使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可

add() 主要方法,用於添加圖表的數據和設置各種配置項

render() 默認將會在根目錄下生成一個 render.html 的文件,文件用瀏覽器打開。

使用主題

自 0.5.2+ 起,pyecharts 支持更換主體色系

使用 pyecharts-snapshot 插件

如果想直接將圖片保存為 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用該插件請確保你的系統上已經安裝了 Nodejs 環境。

安裝 phantomjs $ npm install -g phantomjs-prebuilt

安裝 pyecharts-snapshot $ pip install pyecharts-snapshot

調用 render 方法 bar.render(path='snapshot.png') 文件結尾可以為 svg/jpeg/png/pdf/gif。請注意,svg 文件需要你在初始化 bar 的時候設置 renderer='svg'。

圖形繪制過程

基本上所有的圖表類型都是這樣繪制的:

chart_name = Type() 初始化具體類型圖表。

add() 添加數據及配置項。

render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。

add() 數據一般為兩個列表(長度一致)。如果你的數據是字典或者是帶元組的字典。可利用 cast() 方法轉換。

多次顯示圖表

從 v0.4.0+ 開始,pyecharts 重構了渲染的內部邏輯,改善效率。推薦使用以下方式顯示多個圖表。如果使是 Numpy 或者 Pandas,可以參考這個示例

當然你也可以採用更加酷炫的方式,使用 Jupyter Notebook 來展示圖表,matplotlib 有的,pyecharts 也會有的

Note: 從 v0.1.9.2 版本開始,廢棄 render_notebook() 方法,現已採用更加  pythonic  的做法。直接調用本身實例就可以了。

比如這樣

還有這樣

如果使用的是自定義類,直接調用自定義類示例即可

圖表配置

圖形初始化

通用配置項

xyAxis:平面直角坐標系中的 x、y 軸。(Line、Bar、Scatter、EffectScatter、Kline)

dataZoom:dataZoom 組件 用於區域縮放,從而能自由關注細節的數據信息,或者概覽數據整體,或者去除離群點的影響。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot)

legend:圖例組件。圖例組件展現了不同系列的標記(symbol),顏色和名字。可以通過點擊圖例控制哪些系列不顯示。

label:圖形上的文本標簽,可用於說明圖形的一些數據信息,比如值,名稱等。

lineStyle:帶線圖形的線的風格選項(Line、Polar、Radar、Graph、Parallel)

grid3D:3D笛卡爾坐標系組配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)

axis3D:3D 笛卡爾坐標系 X,Y,Z 軸配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)

visualMap:是視覺映射組件,用於進行『視覺編碼』,也就是將數據映射到視覺元素(視覺通道)

markLine&markPoint:圖形標記組件,用於標記指定的特殊數據,有標記線和標記點兩種。(Bar、Line、Kline)

tooltip:提示框組件,用於移動或點擊滑鼠時彈出數據內容

toolbox:右側實用工具箱

圖表詳細

Bar(柱狀圖/條形圖)

Bar3D(3D 柱狀圖)

Boxplot(箱形圖)

EffectScatter(帶有漣漪特效動畫的散點圖)

Funnel(漏斗圖)

Gauge(儀表盤)

Geo(地理坐標系)

GeoLines(地理坐標系線圖)

Graph(關系圖)

HeatMap(熱力圖)

Kline/Candlestick(K線圖)

Line(折線/面積圖)

Line3D(3D 折線圖)

Liquid(水球圖)

Map(地圖)

Parallel(平行坐標系)

Pie(餅圖)

Polar(極坐標系)

Radar(雷達圖)

Sankey(桑基圖)

Scatter(散點圖)

Scatter3D(3D 散點圖)

ThemeRiver(主題河流圖)

TreeMap(矩形樹圖)

WordCloud(詞雲圖)

用戶自定義

Grid 類:並行顯示多張圖

Overlap 類:結合不同類型圖表疊加畫在同張圖上

Page 類:同一網頁按順序展示多圖

Timeline 類:提供時間線輪播多張圖

統一風格

註:pyecharts v0.3.2以後,pyecharts 將不再自帶地圖 js 文件。如用戶需要用到地圖圖表,可自行安裝對應的地圖文件包。

地圖文件被分成了三個 Python 包,分別為:

全球國家地圖:

echarts-countries-pypkg

中國省級地圖:

echarts-china-provinces-pypkg

中國市級地圖:

echarts-china-cities-pypkg

直接使用python的pip安裝

但是這里大家一定要注意,安裝完地圖包以後一定要重啟jupyter notebook,不然是無法顯示地圖的。

顯示如下:

總得來說,這是一個非常強大的可視化庫,既可以集成在flask、Django開發中,也可以在做數據分析的時候單獨使用,實在是居家旅行的必備神器啊

❼ 求教使用python繪制K線圖

使用matplotlib模塊,相關API請查看網頁鏈接

只要你是個圖,它就能給你畫出來。

希望可以幫到你

❽ 最常用的幾個python庫

Python常用庫大全,看看有沒有你需要的。
環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。

❾ 最受歡迎的 15 大 Python 庫有哪些

Python常用庫大全,看看有沒有你需要的。
環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令。
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
將源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。

閱讀全文

與python高級k線庫相關的資料

熱點內容
nfs怎麼加密ipsec 瀏覽:243
國二考試調用編譯器運算選擇題 瀏覽:748
同濟大學高等數學pdf 瀏覽:232
延時的宏命令怎麼設置 瀏覽:594
資料庫有哪些加密 瀏覽:207
改之理反編譯注冊教程 瀏覽:389
什麼是編譯程序和翻譯程序 瀏覽:205
python課程心得總結 瀏覽:17
派派中怎麼看對方在哪個伺服器 瀏覽:794
xp配置java環境變數配置 瀏覽:7
python中1到100怎麼算 瀏覽:765
小度我想看程序員 瀏覽:505
bs刷裝備建立後文件夾沒有 瀏覽:79
找漫畫看應該下載什麼app 瀏覽:182
如何在vps上搭建自己的代理伺服器 瀏覽:744
nginxphp埠 瀏覽:403
內臟pdf 瀏覽:152
怎麼看雲伺服器架構 瀏覽:87
我的世界國際服為什麼登不進伺服器 瀏覽:998
微盟程序員老婆 瀏覽:932