導航:首頁 > 編程語言 > python貝葉斯彩票

python貝葉斯彩票

發布時間:2022-10-31 23:38:36

Ⅰ 用數學中統計學,概率學計算彩票

彩票中獎,如果不計可能的內幕或者作弊,就是個純概率事件。但是,用統計學和概率學來選號以期提高中獎率是不靠譜的,沒有科學根據的。以網上流傳的幾種「統計學,概率學」選號原則為例:

  1. 認為過去開出的號碼組合不會再開出或者概率降低——這明顯違反了「每次開獎都是獨立事件」這一基本事實,而這是概率論的基本假設

  2. 認為某些特別號碼比如「01,02,03,04,05」不會開出——這種觀點更沒有什麼根據,這種「特殊號碼」開出的幾率毫無差別

因此如果有人告訴你他可以幫你用統計學和概率學來選號提高中獎率,千萬不要相信,不是騙你的錢就是騙你的「選號」費。有這本事,他怎麼不自己發財?

Ⅱ 請問你會用python實現貝葉斯網路了嗎

名函數有個限制,就是只能有一個表達式,不用寫return,返回值就是該表達式的結果。

Ⅲ python 樸素貝葉斯怎樣獲得 概率結果

樸素:特徵條件獨立 貝葉斯:基於貝葉斯定理 根據貝葉斯定理,對一個分類問題,給定樣本特徵x,樣本屬於類別y的概率是 p(y|x)=p(x|y)p(y)p(x) 在這里,x是一個特徵向量,將設x維度為M。

Ⅳ 貝葉斯演算法能用在雙色球預測上嗎

要是彩票可以預測的話,我自己就買了,還告訴您嗎,自己多中點錢不好嗎,那些號稱是專家的,我也沒有看見他們說中頭等獎的呀,所以預測都是騙人的,不中就當做福利,中了就是運氣好,幫到您的話望採納,謝謝

Ⅳ 貝葉斯公式:先定概率決定成功率

葉斯公式非常簡單,幾乎任何人都可以理解。那就是事情的先定概率起關鍵作用。

創業者成為任正非馬化騰的先定概率是多少?以深圳1000萬人計,先定概率是500萬分之一。一個創業者有90%的可能性成為任正非馬化騰,聽起來很高,蠱惑性強,但他成為下一個任正非馬化騰的真實成功率是500萬之一乘以90%,低過彩票中獎率。賣房買彩票比賣房創業更靠譜一些。

有貝葉斯這個朋友,你的投資就不會失去理性。算算概率,馬上就能正常。你以為自己炒股很厲害?炒股成功(包括持平)的先定概率是30%,這註定你的成功率不超過30%,不比進賭場的結局妙。把股市形容為賭場,並不是誇張。

如果你呆在經濟強勢地區,人口與資金持續湧入,創業之前,其實還要想辦法多買一套房子,這也是貝葉斯公式決定的,因為這些地區房價上漲的先定概率極高,傻子買都升值,它可以對沖你的創業失敗,實在輸慘了,不得已賣掉一套房子,家人還有一套房子住,生活正常,有房子住,油鹽醬醋茶,並不貴,照樣可以幸福。

不要用家人的安寧去賭,正因為是家人,對他們尤其要好,對他們更壞,那是把他們當仇人。

摘自: 賣房創業註定失敗

Ⅵ 怎麼使用貝葉斯決策在python中運行

不是版本的問題 ,有兩種可能 1,你的可能前面不用 加 python的 2,你把你的2.6.2卸載調,再裝一次

Ⅶ Python有沒有支持貝葉斯網路的包

Bayesian-belief-networks允許你用純Python創建貝葉斯信念網路和其他圖模型,目前支持四種不同的推理方法。
支持的圖模型
離散變數的貝葉斯信念網路
有著高斯分布的連續變數的高斯貝葉斯網路
推理引擎
消息傳遞和聯合樹演算法(Junction Tree Algorithm)
和積演算法(The Sum Proct Algorithm)
MCMC采樣的近似推理
高斯貝葉斯網路中得Exact Propagation

Ⅷ 實例詳解貝葉斯推理的原理

                                               實例詳解貝葉斯推理的原理

姓名:余玥     學號:16010188033

【嵌牛導讀】:貝葉斯推理是由英國牧師貝葉斯發現的一種歸納推理方法,後來的許多研究者對貝葉斯方法在觀點、方法和理論上不斷的進行完善,最終形成了一種有影響的統計學派,打破了經典統計學一統天下的局面。貝葉斯推理是在經典的統計歸納推理——估計和假設檢驗的基礎上發展起來的一種新的推理方法。與經典的統計歸納推理方法相比,貝葉斯推理在得出結論時不僅要根據當前所觀察到的樣本信息,而且還要根據推理者過去有關的經驗和知識。

【嵌牛鼻子】:貝葉斯推理/統計

【嵌牛提問】:貝葉斯推理的原理是什麼?如何通過實例理解貝葉斯原理?

【嵌牛正文】:

貝葉斯推理是一種精確的數據預測方式。在數據沒有期望的那麼多,但卻想毫無遺漏地,全面地獲取預測信息時非常有用。

提及貝葉斯推理時,人們時常會帶著一種敬仰的心情。其實並非想像中那麼富有魔力,或是神秘。盡管貝葉斯推理背後的數學越來越縝密和復雜,但其背後概念還是非常容易理解。簡言之,貝葉斯推理有助於大家得到更有力的結論,將其置於已知的答案中。

貝葉斯推理理念源自托馬斯貝葉斯。三百年前,他是一位從不循規蹈矩的教會長老院牧師。貝葉斯寫過兩本書,一本關於神學,一本關於概率。他的工作就包括今天著名的貝葉斯定理雛形,自此以後應用於推理問題,以及有根據猜測(ecated guessing)術語中。貝葉斯理念如此流行,得益於一位名叫理查·布萊斯牧師的大力推崇。此人意識到這份定理的重要性後,將其優化完善並發表。因此,此定理變得更加准確。也因此,歷史上將貝葉斯定理稱之為 Bayes-Price法則。

譯者註:ecated guessing 基於(或根據)經驗(或專業知識、手頭資料、事實等)所作的估計(或預測、猜測、意見等)

影院中的貝葉斯推理

試想一下,你前往影院觀影,前面觀影的小夥伴門票掉了,此時你想引起他們的注意。此圖是他們的背影圖。你無法分辨他們的性別,僅僅知道他們留了長頭發。那你是說,女士打擾一下,還是說,先生打擾一下。考慮到你對男人和女人發型的認知,或許你會認為這位是位女士。(本例很簡單,只存在兩種發長和性別)

現在將上面的情形稍加變化,此人正在排隊准備進入男士休息室。依靠這個額外的信息,或許你會認為這位是位男士。此例採用常識和背景知識即可完成判斷,無需思考。而貝葉斯推理是此方式的數學實現形式,得益於此,我們可以做出更加精確的預測。

我們為電影院遇到的困境加上數字。首先假定影院中男女各佔一半,100個人中,50個男人,50個女人。女人中,一半為長發,餘下的25人為短發。而男人中,48位為短發,兩位為長發。存在25個長發女人和2位長發男人,由此推斷,門票持有者為女士的可能性很大。

100個在男士休息室外排隊,其中98名男士,2位女士為陪同。長發女人和短發女人依舊對半分,但此處僅僅各佔一種。而男士長發和短發的比例依舊保持不變,按照98位男士算,此刻短發男士有94人,長發為4人。考慮到有一位長發女士和四位長發男士,此刻最有可能的是持票者為男士。這是貝葉斯推理原理的具體案例。事先知曉一個重要的信息線索,門票持有者在男士休息室外排隊,可以幫助我們做出更好的預測。

為了清晰地闡述貝葉斯推理,需要花些時間清晰地定義我們的理念。不幸的是,這需要用到數學知識。除非不得已,我盡量避免此過程太過深奧,緊隨我查看更多的小節,必定會從中受益。為了大家能夠建立一個基礎,我們需要快速地提及四個概念:概率、條件概率、聯合概率以及邊際概率。

概率

一件事發生的概率,等於該事件發生的數目除以所有事件發生的數目。觀影者為一個女士的概率為50位女士除以100位觀影者,即0.5 或50%。換作男士亦如此。

而在男士休息室排列此種情形下,女士概率降至0.02,男士的概率為0.98。

條件概率

條件概率回答了這樣的問題,倘若我知道此人是位女士,其為長發的概率是多少?條件概率的計算方式和直接得到的概率一樣,但它們更像所有例子中滿足某個特定條件的子集。本例中,此人為女士,擁有長發的人士的條件概率,P(long hair | woman)為擁有長發的女士數目,除以女士的總數,其結果為0.5。無論我們是否考慮男士休息室外排隊,或整個影院。

同樣的道理,此人為男士,擁有長發的條件概率,P(long hair | man)為0.4,不管其是否在隊列中。

很重要的一點,條件概率P(A | B)並不等同於P(B | A)。比如P(cute | puppy)不同於P(puppy | cute)。倘若我抱著的是小狗,可愛的概率是很高的。倘若我抱著一個可愛的東西,成為小狗的概率中等偏下。它有可能是小貓、小兔子、刺蝟,甚至一個小人。

聯合概率

聯合概率適合回答這樣的問題,此人為一個短發女人的概率為多少?找出答案需要兩步。首先,我們先看概率是女人的概率,P(woman)。接著,我們給出頭發短人士的概率,考慮到此人為女士,P(short hair | woman)。通過乘法,進行聯合,給出聯合概率,P(woman with short hair) = P(woman) * P(short hair | woman)。利用此方法,我們便可計算出我們已知的概率,所有觀影中P(woman with long hair)為0.25,而在男士休息室隊列中的P(woman with long hair)為0.1。不同是因為兩個案例中的P(woman)不同。

相似的,觀影者中P(man with long hair) 為0.02,而在男士休息室隊列中概率為0.04。

和條件概率不同,聯合概率和順序無關,P(A and B)等同於P(B and A)。比如,同時擁有牛奶和油炸圈餅的概率,等同於擁有油炸圈餅和牛奶的概率。

邊際概率

我們最後一個基礎之旅為邊際概率。特別適合回答這樣的問題,擁有長發人士的概率?為計算出結果,我們須累加此事發生的所有概率——即男士留長發的概率加女士留長發的概率。加上這兩個概率,即給出所有觀影者P(long hair)的值0.27,而男休息室隊列中的P(long hair)為0.05。

貝葉斯定理

現在到了我們真正關心的部分。我們想回答這樣的問題,倘若我們知道擁有長發的人士,那他們是位女士或男士的概率為?這是一個條件概率,P(man | long hair),為我們已知曉的P(long hair | man)逆方式。因為條件概率不可逆,因此,我們對這個新條件概率知之甚少。

幸運的是托馬斯觀察到一些很酷炫的知識可以幫到我們。

根據聯合概率計算規則,我們給出方程P(man with long hair)和P(long hair and man)。因為聯合概率可逆,因此這兩個方程等價。

藉助一點代數知識,我們就能解出P(man | long hair)。

表達式採用A和B,替換「man」和「long hair」,於是我們得到貝葉斯定理。

我們回到最初,藉助貝葉斯定理,解決電影院門票困境。

首先,需要計算邊際概率P(long hair)。

接著代入數據,計算出長發中是男士的概率。對於男士休息室隊列中的觀影者而言,P(man | long hair)微微0.8。這讓我們更加確信一直覺,掉門票的可能是一男士。貝葉斯定理抓住了在此情形下的直覺。更重要的是,更重要的是吸納了先驗知識,男士休息室外隊列中男士遠多於女士。借用此先驗知識,更新我們對一這情形的認識。

概率分布

諸如影院困境這樣的例子,很好地解釋了貝葉斯推理的由來,以及作用機制。然而,在數據科學應用領域,此推理常常用於數據解釋。有了我們測出來的先驗知識,藉助小數據集便可得出更好的結論。在開始細說之前,請先允許我先介紹點別的。就是我們需要清楚一個概率分布。

此處可以這樣考慮概率,一壺咖啡正好裝滿一個杯子。倘若用一個杯子來裝沒有問題,那不止一個杯子呢,你需考慮如何將這些咖啡分這些杯子中。當然你可以按照自己的意願,只要將所有咖啡放入某個杯子中。而在電影院,一個杯子或許代表女士或者男士。

或者我們用四個杯子代表性別和發長的所有組合分布。這兩個案例中,總咖啡數量累加起來為一杯。

通常,我們將杯子挨個擺放,看其中的咖啡量就像一個柱狀圖。咖啡就像一種信仰,此概率分布用於顯示我們相信某件事情的強烈程度。

假設我投了一塊硬幣,然後蓋住它,你會認為正面和反面朝上的幾率是一樣的。

假設我投了一個骰子,然後蓋住它,你會認為六個面中的每一個面朝上的幾率是一樣的。

假設我買了一期強力球彩票,你會認為中獎的可能性微乎其微。投硬幣、投骰子、強力球彩票的結果,都可以視為收集、測量數據的例子。

毫無意外,你也可以對其它數據持有某種看法。這里我們考慮美國成年人的身高,倘若我告訴你,我見過,並測量了某些人的身高,那你對他們身高的看法,或許如上圖所示。此觀點認為一個人的身高可能介於150和200cm之間,最有可能的是介於180和190cm之間。

此分布可以分成更多的方格,視作將有限的咖啡放入更多的杯子,以期獲得一組更加細顆粒度的觀點。

最終虛擬的杯子數量將非常大,以至於這樣的比喻變得不恰當。這樣,分布變得連續。運用的數學方法可能有點變化,但底層的理念還是很有用。此圖表明了你對某一事物認知的概率分布。

感謝你們這么有耐心!!有了對概率分布的介紹,我們便可採用貝葉斯定理進行數據解析了。為了說明這個,我以我家小狗稱重為例。

獸醫領域的貝葉斯推理

它叫雅各賓當政,每次我們去獸醫診所,它在秤上總是各種晃動,因此很難讀取一個准確的數據。得到一個准確的體重數據很重要,這是因為,倘若它的體重有所上升,那麼我們就得減少其食物的攝入量。它喜歡食物勝過它自己,所以說風險蠻大的。

最近一次,在它喪失耐心前,我們測了三次:13.9鎊,17.5鎊以及14.1鎊。這是針對其所做的標准統計分析。計算這一組數字的均值,標准偏差,標准差,便可得到小狗當政的准確體重分布。

分布展示了我們認為的小狗體重,這是一個均值15.2鎊,標准差1.2鎊的正態分布。真實得測量如白線所示。不幸的是,這個曲線並非理想的寬度。盡管這個峰值為15.2鎊,但概率分布顯示,在13鎊很容易就到達一個低值,在17鎊到達一個高值。太過寬泛以致無法做出一個確信的決策。面對如此情形,通常的策略是返回並收集更多的數據,但在一些案例中此法操作性不強,或成本高昂。本例中,小狗當政的(Reign )耐心已經耗盡,這是我們僅有的測量數據。

此時我們需要貝葉斯定理,幫助我們處理小規模數據集。在使用定理前,我們有必要重新回顧一下這個方程,查看每個術語。

我們用「w」 (weight)和 「m」 (measurements)替換「A」 and 「B」 ,以便更清晰地表示我們如何用此定理。四個術語分別代表此過程的不同部分。

先驗概率,P(w),表示已有的事物認知。本例中,表示未稱量時,我們認為的當政體重w。

似然值,P(m | w),表示針對某個具體體重w所測的值m。又叫似然數據。

後驗概率,P(w | m),表示稱量後,當政為某個體重w的概率。當然這是我們最感興趣的。

譯者註:後驗概率,通常情況下,等於似然值乘以先驗值。是我們對於世界的內在認知。

概率數據,P(m),表示某個數據點被測到的概率。本例中,我們假定它為一個常量,且測量本身沒有偏向。

對於完美的不可知論者來說,也不是什麼特別糟糕的事情,而且無需對結果做出什麼假設。例如本例中,即便假定當Reign的體重為13鎊、或1鎊,或1000000 鎊,讓數據說話。我們先假定一個均一的先驗概率,即對所有值而言,概率分布就一常量值。貝葉斯定理便可簡化為P(w | m) = P(m | w)。

此刻,藉助Reign的每個可能體重,我們計算出三個測量的似然值。比如,倘若當政的體重為1000鎊,極端的測量值是不太可能的。然而,倘若當政的體重為14鎊或16鎊。我們可以遍歷所有,利用Reign的每一個假設體重值,計算出測量的似然值。這便是P(m | w)。得益於這個均一的先驗概率,它等同於後驗概率分布 P(w | m)。

這並非偶然。通過均值、標准偏差、標准差得來的,很像答案。實際上,它們是一樣的,採用一個均一的先驗概率給出傳統的統計估測結果。峰值所在的曲線位置,均值,15.2鎊也叫體重的極大似然估計(MLE)。

即使採用了貝葉斯定理,但依舊離有用的估計很遠。為此,我們需要非均一先驗概率。先驗分布表示未測量情形下對某事物的認知。均一的先驗概率認為每個可能的結果都是均等的,通常都很罕見。在測量時,對某些量已有些認識。年齡總是大於零,溫度總是大於-276攝氏度。成年人身高罕有超過8英尺的。某些時候,我們擁有額外的領域知識,一些值很有可能出現在其它值中。

在Reign的案例中,我確實擁有其它的信息。我知道上次它在獸醫診所稱到的體重是14.2鎊。我還知道它並不是特別顯胖或顯瘦,即便我的胳膊對重量不是特別敏感。有鑒於此,它大概重14.2鎊,相差一兩鎊上下。為此,我選用峰值為14.2鎊。標准偏差為0.5鎊的正態分布。

先驗概率已經就緒,我們重復計算後驗概率。為此,我們考慮某一概率,此時Reign體重為某一特定值,比如17鎊。接著,17鎊這一似然值乘以測量值為17這一條件概率。接著,對於其它可能的體重,我們重復這一過程。先驗概率的作用是降低某些概率,擴大另一些概率。本例中,在區間13-15鎊增加更多的測量值,以外的區間則減少更多的測量值。這與均一先驗概率不同,給出一個恰當的概率,當政的真實體重為17鎊。藉助非均勻的先驗概率,17鎊掉入分布式的尾部。乘以此概率值使得體重為17鎊的似然值變低。

通過計算當政每一個可能的體重概率,我們得到一個新的後驗概率。後驗概率分布的峰值也叫最大後驗概率(MAP),本例為14.1鎊。這和均一先驗概率有明顯的不同。此峰值更窄,有助於我們做出一個更可信的估測。現在來看,小狗當政的體重變化不大,它的體型依舊如前。

通過吸收已有的測量認知,我們可以做出一個更加准確的估測,其可信度高於其他方法。這有助於我們更好地使用小量數據集。先驗概率賦予17.5鎊的測量值是一個比較低的概率。這幾乎等同於反對此偏離正常值的測量值。不同於直覺和常識的異常檢測方式,貝葉斯定理有助於我們採用數學的方式進行異常檢測。

另外,假定術語P(m)是均一的,但恰巧我們知道稱量存在某種程度的偏好,這將反映在P(m)中。若稱量僅輸出某些數字,或返回讀數2.0,占整個時間的百分之10,或第三次嘗試產生一個隨機測量值,均需要手動修改P(m)以反映這一現象,以便後驗概率更加准確。

規避貝葉斯陷阱

探究Reign的真實體重體現了貝葉斯的優勢。但這也存在某些陷阱。通過一些假設我們改進了估測,而測量某些事物的目的就是為了了解它。倘若我們假定對某一答案有所了解,我們可能會刪改此數據。馬克·吐溫對強先驗的危害做了簡明地闡述,「將你陷入困境的不是你所不知道的,而是你知道的那些看似正確的東西。」

假如採取強先驗假設,當Reign的體重在13與15鎊之間,再假如其真實體重為12.5鎊,我們將無法探測到。先驗認知認為此結果的概率為零,不論做多少次測量,低於13鎊的測量值都認為無效。

幸運的是,有一種兩面下注的辦法,可以規避這種盲目地刪除。針對對於每一個結果至少賦予一個小的概率,倘若藉助物理領域的一些奇思妙想,當政確實能稱到1000鎊,那我們收集的測量值也能反映在後驗概率中。這也是正態分布作為先驗概率的原因之一。此分布集中了我們對一小撮結果的大多數認識,不管怎麼延展,其尾部再長都不會為零。

在此,紅桃皇後是一個很好的榜樣:

愛麗絲笑道:「試了也沒用,沒人會相信那些不存在的事情。」

「我敢說你沒有太多的練習」,女王回應道,「我年輕的時候,一天中的一個半小時都在閉上眼睛,深呼吸。為何,那是因為有時在早飯前,我已經意識到存在六種不可能了。」來自劉易斯·卡羅爾的《愛麗絲漫遊奇境》

Ⅸ 如何用python編譯貝葉斯分類

可以做分類。通常是做文本分類。 在此基礎上做郵件的垃圾郵件過濾。還有自動識別效果也不錯。 這是一個常見的演算法。而且用處挺多的。 在語言分析里常用。比如:我有一組文件,想自動分成不同的類別。 再比如我有一個文章,想根據內容,

閱讀全文

與python貝葉斯彩票相關的資料

熱點內容
如何在vps上搭建自己的代理伺服器 瀏覽:742
nginxphp埠 瀏覽:401
內臟pdf 瀏覽:150
怎麼看雲伺服器架構 瀏覽:83
我的世界國際服為什麼登不進伺服器 瀏覽:994
微盟程序員老婆 瀏覽:928
intellij創建java 瀏覽:110
java連接odbc 瀏覽:38
啟動修復無法修復電腦命令提示符 瀏覽:359
手機編程是什麼 瀏覽:98
山東移動程序員 瀏覽:163
蘇州java程序員培訓學校 瀏覽:477
單片機液晶驅動 瀏覽:854
魔拆app里能拆到什麼 瀏覽:131
新預演算法的立法理念 瀏覽:144
wdcpphp的路徑 瀏覽:134
單片機p0口電阻 瀏覽:926
瀏覽器中調簡訊文件夾 瀏覽:594
五菱宏光空調壓縮機 瀏覽:68
為什麼app佔用幾百兆 瀏覽:680