A. 關於python人臉識別的問題
應該是沒有找到分類器編碼文件,把 haarcascade_frontalface_default.xml, haarcascade_eye.xml文件放到項目根目錄下,再用cv.CascadeClassifier(path1), cv.CascadeClassifier(path2)兩個API導入,另python下windows的文件路徑要用 \\ 或者 /
B. 人臉識別為什麼用python開發
可以使用OpenCV,OpenCV的人臉檢測功能在一般場合還是不錯的。而ubuntu正好提供了python-opencv這個包,用它可以方便地實現人臉檢測的代碼。
寫代碼之前應該先安裝python-opencv:
#!/usr/bin/python
#-*-coding:UTF-8-*-
#face_detect.py
#FaceDetectionusingOpenCV.Basedonsamplecodefrom:
#http://python.pastebin.com/m76db1d6b
#Usage:pythonface_detect.py<image_file>
importsys,os
fromopencv.cvimport*
fromopencv.highguiimport*
fromPILimportImage,ImageDraw
frommathimportsqrt
defdetectObjects(image):
""""""
grayscale=cvCreateImage(cvSize(image.width,image.height),8,1)
cvCvtColor(image,grayscale,CV_BGR2GRAY)
storage=cvCreateMemStorage(0)
cvClearMemStorage(storage)
cvEqualizeHist(grayscale,grayscale)
cascade=cvLoadHaarClassifierCascade(
'/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml',
cvSize(1,1))
faces=cvHaarDetectObjects(grayscale,cascade,storage,1.1,2,
CV_HAAR_DO_CANNY_PRUNING,cvSize(20,20))
result=[]
forfinfaces:
result.append((f.x,f.y,f.x+f.width,f.y+f.height))
returnresult
defgrayscale(r,g,b):
returnint(r*.3+g*.59+b*.11)
defprocess(infile,outfile):
image=cvLoadImage(infile);
ifimage:
faces=detectObjects(image)
im=Image.open(infile)
iffaces:
draw=ImageDraw.Draw(im)
forfinfaces:
draw.rectangle(f,outline=(255,0,255))
im.save(outfile,"JPEG",quality=100)
else:
print"Error:cannotdetectfaceson%s"%infile
if__name__=="__main__":
process('input.jpg','output.jpg')
C. 誰用過python中的第三方庫face recognition
簡介
該庫可以通過python或者命令行即可實現人臉識別的功能。使用dlib深度學習人臉識別技術構建,在戶外臉部檢測資料庫基準(Labeled Faces in the Wild)上的准確率為99.38%。
在github上有相關的鏈接和API文檔。
在下方為提供的一些相關源碼或是文檔。當前庫的版本是v0.2.0,點擊docs可以查看API文檔,我們可以查看一些函數相關的說明等。
安裝配置
安裝配置很簡單,按照github上的說明一步一步來就可以了。
根據你的python版本輸入指令:
pip install face_recognition11
或者
pip3 install face_recognition11
正常來說,安裝過程中會出錯,會在安裝dlib時出錯,可能報錯也可能會卡在那不動。因為pip在編譯dlib時會出錯,所以我們需要手動編譯dlib再進行安裝。
按照它給出的解決辦法:
1、先下載下來dlib的源碼。
git clone
2、編譯dlib。
cd dlib
mkdir build
cd build
cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1
cmake --build1234512345
3、編譯並安裝python的拓展包。
cd ..
python3 setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA1212
注意:這個安裝步驟是默認認為沒有GPU的,所以不支持cuda。
在自己手動編譯了dlib後,我們可以在python中import dlib了。
之後再重新安裝,就可以配置成功了。
根據你的python版本輸入指令:
pip install face_recognition11
或者
pip3 install face_recognition11
安裝成功之後,我們可以在python中正常import face_recognition了。
編寫人臉識別程序
編寫py文件:
# -*- coding: utf-8 -*-
#
# 檢測人臉
import face_recognition
import cv2
# 讀取圖片並識別人臉
img = face_recognition.load_image_file("silicon_valley.jpg")
face_locations = face_recognition.face_locations(img)
print face_locations
# 調用opencv函數顯示圖片
img = cv2.imread("silicon_valley.jpg")
cv2.namedWindow("原圖")
cv2.imshow("原圖", img)
# 遍歷每個人臉,並標注
faceNum = len(face_locations)
for i in range(0, faceNum):
top = face_locations[i][0]
right = face_locations[i][1]
bottom = face_locations[i][2]
left = face_locations[i][3]
start = (left, top)
end = (right, bottom)
color = (55,255,155)
thickness = 3
cv2.rectangle(img, start, end, color, thickness)
# 顯示識別結果
cv2.namedWindow("識別")
cv2.imshow("識別", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
注意:這里使用了python-OpenCV,一定要配置好了opencv才能運行成功。
運行結果:
程序會讀取當前目錄下指定的圖片,然後識別其中的人臉,並標注每個人臉。
(使用圖片來自美劇矽谷)
編寫人臉比對程序
首先,我在目錄下放了幾張圖片:
這里用到的是一張喬布斯的照片和一張奧巴馬的照片,和一張未知的照片。
編寫程序:
# 識別圖片中的人臉
import face_recognition
jobs_image = face_recognition.load_image_file("jobs.jpg");
obama_image = face_recognition.load_image_file("obama.jpg");
unknown_image = face_recognition.load_image_file("unknown.jpg");
jobs_encoding = face_recognition.face_encodings(jobs_image)[0]
obama_encoding = face_recognition.face_encodings(obama_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]
results = face_recognition.compare_faces([jobs_encoding, obama_encoding], unknown_encoding )
labels = ['jobs', 'obama']
print('results:'+str(results))
for i in range(0, len(results)):
if results[i] == True:
print('The person is:'+labels[i])
運行結果:
識別出未知的那張照片是喬布斯的。
攝像頭實時識別
代碼:
# -*- coding: utf-8 -*-
import face_recognition
import cv2
video_capture = cv2.VideoCapture(1)
obama_img = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_img)[0]
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
ret, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
if process_this_frame:
face_locations = face_recognition.face_locations(small_frame)
face_encodings = face_recognition.face_encodings(small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
if match[0]:
name = "Barack"
else:
name = "unknown"
face_names.append(name)
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), 2)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left+6, bottom-6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()5455
識別結果:
我直接在手機上網路了幾張圖試試,程序識別出了奧巴馬。
這個庫很cool啊!
D. 怎樣使用OpenCV進行人臉識別
友情提示,要看懂代碼前,你得先知道OpenCV的安裝和配置,會用C++,用過一些OpenCV函數。基本的圖像處理和矩陣知識也是需要的。[gm:我是簫鳴的注釋]由於我僅僅是翻譯,對於六級才過的我,肯定有一些翻譯錯的或者不當的地方,所以請大家糾錯。
1.1.介紹Introction
從OpenCV2.4開始,加入了新的類FaceRecognizer,我們可以使用它便捷地進行人臉識別實驗。本文既介紹代碼使用,又介紹演算法原理。(他寫的源代碼,我們可以在OpenCV的opencv\moles\contrib\doc\facerec\src下找到,當然也可以在他的github中找到,如果你想研究源碼,自然可以去看看,不復雜)目前支持的演算法有
Eigenfaces特徵臉createEigenFaceRecognizer()
Fisherfaces createFisherFaceRecognizer()
LocalBinary Patterns Histograms局部二值直方圖 createLBPHFaceRecognizer()
下面所有的例子中的代碼在OpenCV安裝目錄下的samples/cpp下面都能找到,所有的代碼商用或者學習都是免費的。1.2.人臉識別Face Recognition
對人類來說,人臉識別很容易。文獻[Tu06]告訴我們,僅僅是才三天的嬰兒已經可以區分周圍熟悉的人臉了。那麼對於計算機來說,到底有多難?其實,迄今為止,我們對於人類自己為何可以區分不同的人所知甚少。是人臉內部特徵(眼睛、鼻子、嘴巴)還是外部特徵(頭型、發際線)對於人類識別更有效?我們怎麼分析一張圖像,大腦是如何對它編碼的?David Hubel和TorstenWiesel向我們展示,我們的大腦針對不同的場景,如線、邊、角或者運動這些局部特徵有專門的神經細胞作出反應。顯然我們沒有把世界看成零散的塊塊,我們的視覺皮層必須以某種方式把不同的信息來源轉化成有用的模式。自動人臉識別就是如何從一幅圖像中提取有意義的特徵,把它們放入一種有用的表示方式,然後對他們進行一些分類。基於幾何特徵的人臉的人臉識別可能是最直觀的方法來識別人臉。第一個自動人臉識別系統在[Kanade73]中又描述:標記點(眼睛、耳朵、鼻子等的位置)用來構造一個特徵向量(點與點之間的距離、角度等)。通過計算測試和訓練圖像的特徵向量的歐氏距離來進行識別。這樣的方法對於光照變化很穩健,但也有巨大的缺點:標記點的確定是很復雜的,即使是使用最先進的演算法。一些幾何特徵人臉識別近期工作在文獻[Bru92]中有描述。一個22維的特徵向量被用在一個大資料庫上,單靠幾何特徵不能提供足夠的信息用於人臉識別。特徵臉方法在文獻[TP91]中有描述,他描述了一個全面的方法來識別人臉:面部圖像是一個點,這個點是從高維圖像空間找到它在低維空間的表示,這樣分類變得很簡單。低維子空間低維是使用主元分析(Principal Component Analysis,PCA)找到的,它可以找擁有最大方差的那個軸。雖然這樣的轉換是從最佳重建角度考慮的,但是他沒有把標簽問題考慮進去。[gm:讀懂這段需要一些機器學習知識]。想像一個情況,如果變化是基於外部來源,比如光照。軸的最大方差不一定包含任何有鑒別性的信息,因此此時的分類是不可能的。因此,一個使用線性鑒別(Linear Discriminant Analysis,LDA)的特定類投影方法被提出來解決人臉識別問題[BHK97]。其中一個基本的想法就是,使類內方差最小的同時,使類外方差最大。
近年來,各種局部特徵提取方法出現。為了避免輸入的圖像的高維數據,僅僅使用的局部特徵描述圖像的方法被提出,提取的特徵(很有希望的)對於局部遮擋、光照變化、小樣本等情況更強健。有關局部特徵提取的方法有蓋伯小波(Gabor Waelets)([Wiskott97]),離散傅立葉變換(DiscreteCosinus Transform,DCT)([Messer06]),局部二值模式(LocalBinary Patterns,LBP)([AHP04])。使用什麼方法來提取時域空間的局部特徵依舊是一個開放性的研究問題,因為空間信息是潛在有用的信息。
1.3.人臉庫Face Database
我們先獲取一些數據來進行實驗吧。我不想在這里做一個幼稚的例子。我們在研究人臉識別,所以我們需要一個真的人臉圖像!你可以自己創建自己的數據集,也可以從這里(http://face-rec.org/databases/)下載一個。
AT&TFacedatabase又稱ORL人臉資料庫,40個人,每人10張照片。照片在不同時間、不同光照、不同表情(睜眼閉眼、笑或者不笑)、不同人臉細節(戴眼鏡或者不戴眼鏡)下採集。所有的圖像都在一個黑暗均勻的背景下採集的,正面豎直人臉(有些有有輕微旋轉)。YaleFacedatabase A ORL資料庫對於初始化測試比較適合,但它是一個簡單的資料庫,特徵臉已經可以達到97%的識別率,所以你使用其他方法很難得到更好的提升。Yale人臉資料庫是一個對於初始實驗更好的資料庫,因為識別問題更復雜。這個資料庫包括15個人(14個男人,1個女人),每一個都有11個灰度圖像,大小是320*243像素。資料庫中有光照變化(中心光照、左側光照、右側光照)、表情變化(開心、正常、悲傷、瞌睡、驚訝、眨眼)、眼鏡(戴眼鏡或者沒戴)。
壞消息是它不可以公開下載,可能因為原來的伺服器壞了。但我們可以找到一些鏡像(比如 theMIT)但我不能保證它的完整性。如果你需要自己剪裁和校準圖像,可以閱讀我的筆記(bytefish.de/blog/fisherfaces)。ExtendedYale Facedatabase B 此資料庫包含38個人的2414張圖片,並且是剪裁好的。這個資料庫重點是測試特徵提取是否對光照變化強健,因為圖像的表情、遮擋等都沒變化。我認為這個資料庫太大,不適合這篇文章的實驗,我建議使用ORL資料庫。
1.3.1. 准備數據
我們從網上下了數據,下了我們需要在程序中讀取它,我決定使用CSV文件讀取它。一個CSV文件包含文件名,緊跟一個標簽。
/path/to/image.ext;0
假設/path/to/image.ext是圖像,就像你在windows下的c:/faces/person0/image0.jpg。最後我們給它一個標簽0。這個標簽類似代表這個人的名字,所以同一個人的照片的標簽都一樣。我們對下載的ORL資料庫進行標識,可以獲取到如下結果:
./at/s1/1.pgm;0
./at/s1/2.pgm;0
...
./at/s2/1.pgm;1
./at/s2/2.pgm;1
...
./at/s40/1.pgm;39
./at/s40/2.pgm;39
想像我已經把圖像解壓縮在D:/data/at下面,而CSV文件在D:/data/at.txt。下面你根據自己的情況修改替換即可。一旦你成功建立CSV文件,就可以像這樣運行示常式序:
facerec_demo.exe D:/data/at.txt
1.3.2 Creating the CSV File
你不需要手工來創建一個CSV文件,我已經寫了一個Python程序來做這事。
[gm:說一個我實現的方法
如果你會cmd命令,或者稱DOS命令,那麼你打開命令控制台。假設我們的圖片放在J:下的Faces文件夾下,可以輸入如下語句:
J:\Faces\ORL>dir /b/s *.bmp > at.txt
然後你打開at.txt文件可能看到如下內容(後面的0,1..標簽是自己加的):
。。。。
J:\Faces\ORL\s1\1.bmp;0
J:\Faces\ORL\s1\10.bmp;0
J:\Faces\ORL\s1\2.bmp;0
J:\Faces\ORL\s1\3.bmp;0
J:\Faces\ORL\s1\4.bmp;0
J:\Faces\ORL\s1\5.bmp;0
J:\Faces\ORL\s1\6.bmp;0
J:\Faces\ORL\s1\7.bmp;0
J:\Faces\ORL\s1\8.bmp;0
J:\Faces\ORL\s1\9.bmp;0
J:\Faces\ORL\s10\1.bmp;1
J:\Faces\ORL\s10\10.bmp;1
J:\Faces\ORL\s10\2.bmp;1
J:\Faces\ORL\s10\3.bmp;1
J:\Faces\ORL\s10\4.bmp;1
J:\Faces\ORL\s10\5.bmp;1
J:\Faces\ORL\s10\6.bmp;1
。。。。
自然還有c++編程等方法可以做得更好,看這篇文章反響,如果很多人需要,我就把這部分的代碼寫出來。(遍歷多個文件夾,標上標簽)
]
特徵臉Eigenfaces
我們講過,圖像表示的問題是他的高維問題。二維灰度圖像p*q大小,是一個m=qp維的向量空間,所以一個100*100像素大小的圖像就是10,000維的圖像空間。問題是,是不是所有的維數空間對我們來說都有用?我們可以做一個決定,如果數據有任何差異,我們可以通過尋找主元來知道主要信息。主成分分析(Principal Component Analysis,PCA)是KarlPearson (1901)獨立發表的,而 Harold Hotelling (1933)把一些可能相關的變數轉換成一個更小的不相關的子集。想法是,一個高維數據集經常被相關變數表示,因此只有一些的維上數據才是有意義的,包含最多的信息。PCA方法尋找數據中擁有最大方差的方向,被稱為主成分。
演算法描述Algorithmic Description
令 2 表示一個隨機特徵,其中 3 .
計算均值向量 4
5
計算協方差矩陣 S
6
計算 的特徵值7 和對應的特徵向量 8 9
對特徵值進行遞減排序,特徵向量和它順序一致. K個主成分也就是k個最大的特徵值對應的特徵向量。
x的K個主成份:
10其中11 .
PCA基的重構:
12其中 13 .
然後特徵臉通過下面的方式進行人臉識別:
A. 把所有的訓練數據投影到PCA子空間
B. 把待識別圖像投影到PCA子空間
C. 找到訓練數據投影後的向量和待識別圖像投影後的向量最近的那個。
還有一個問題有待解決。比如我們有400張圖片,每張100*100像素大小,那麼PCA需要解決協方差矩陣 14的求解,而X的大小是10000*400,那麼我們會得到10000*10000大小的矩陣,這需要大概0.8GB的內存。解決這個問題不容易,所以我們需要另一個計策。就是轉置一下再求,特徵向量不變化。文獻 [Duda01]中有描述。
[gm:這個PCA還是自己搜著看吧,這里的講的不清楚,不適合初學者看]OpenCV中使用特徵臉Eigenfaces in OpenCV
給出示常式序源代碼
#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <fstream>
#include <sstream>
usingnamespace cv;
usingnamespace std;
static Mat norm_0_255(InputArray _src) {
Mat src = _src.getMat();
// 創建和返回一個歸一化後的圖像矩陣:
Mat dst;
switch(src.channels()) {
case1:
cv::normalize(_src, dst, 0,255, NORM_MINMAX, CV_8UC1);
break;
case3:
cv::normalize(_src, dst, 0,255, NORM_MINMAX, CV_8UC3);
break;
default:
src.To(dst);
break;
}
return dst;
}
//使用CSV文件去讀圖像和標簽,主要使用stringstream和getline方法
staticvoid read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator =';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message ="No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty()&&!classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, constchar*argv[]) {
// 檢測合法的命令,顯示用法
// 如果沒有參數輸入則退出!.
if (argc <2) {
cout <<"usage: "<< argv[0]<<" <csv.ext> <output_folder> "<< endl;
exit(1);
}
string output_folder;
if (argc ==3) {
output_folder = string(argv[2]);
}
//讀取你的CSV文件路徑.
string fn_csv = string(argv[1]);
// 2個容器來存放圖像數據和對應的標簽
vector<Mat> images;
vector<int> labels;
// 讀取數據. 如果文件不合法就會出錯
// 輸入的文件名已經有了.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr <<"Error opening file \""<< fn_csv <<"\". Reason: "<< e.msg << endl;
// 文件有問題,我們啥也做不了了,退出了
exit(1);
}
// 如果沒有讀取到足夠圖片,我們也得退出.
if(images.size()<=1) {
string error_message ="This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// 得到第一張照片的高度. 在下面對圖像
// 變形到他們原始大小時需要
int height = images[0].rows;
// 下面的幾行代碼僅僅是從你的數據集中移除最後一張圖片
//[gm:自然這里需要根據自己的需要修改,他這里簡化了很多問題]
Mat testSample = images[images.size() -1];
int testLabel = labels[labels.size() -1];
images.pop_back();
labels.pop_back();
// 下面幾行創建了一個特徵臉模型用於人臉識別,
// 通過CSV文件讀取的圖像和標簽訓練它。
// T這里是一個完整的PCA變換
//如果你只想保留10個主成分,使用如下代碼
// cv::createEigenFaceRecognizer(10);
//
// 如果你還希望使用置信度閾值來初始化,使用以下語句:
// cv::createEigenFaceRecognizer(10, 123.0);
//
// 如果你使用所有特徵並且使用一個閾值,使用以下語句:
// cv::createEigenFaceRecognizer(0, 123.0);
//
Ptr<FaceRecognizer> model = createEigenFaceRecognizer();
model->train(images, labels);
// 下面對測試圖像進行預測,predictedLabel是預測標簽結果
int predictedLabel = model->predict(testSample);
//
// 還有一種調用方式,可以獲取結果同時得到閾值:
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// 這里是如何獲取特徵臉模型的特徵值的例子,使用了getMat方法:
Mat eigenvalues = model->getMat("eigenvalues");
// 同樣可以獲取特徵向量:
Mat W = model->getMat("eigenvectors");
// 得到訓練圖像的均值向量
Mat mean = model->getMat("mean");
// 現實還是保存:
if(argc==2) {
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
} else {
imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
}
// 現實還是保存特徵臉:
for (int i =0; i < min(10, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// 得到第 #i個特徵
Mat ev = W.col(i).clone();
//把它變成原始大小,為了把數據顯示歸一化到0~255.
Mat grayscale = norm_0_255(ev.reshape(1, height));
// 使用偽彩色來顯示結果,為了更好的感受.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
// 顯示或者保存:
if(argc==2) {
imshow(format("eigenface_%d", i), cgrayscale);
} else {
imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
}
}
// 在一些預測過程中,顯示還是保存重建後的圖像:
for(int num_components =10; num_components <300; num_components+=15) {
// 從模型中的特徵向量截取一部分
Mat evs = Mat(W, Range::all(), Range(0, num_components));
Mat projection = subspaceProject(evs, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(evs, mean, projection);
// 歸一化結果,為了顯示:
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
// 顯示或者保存:
if(argc==2) {
imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
} else {
imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
}
}
// 如果我們不是存放到文件中,就顯示他,這里使用了暫定等待鍵盤輸入:
if(argc==2) {
waitKey(0);
}
return0;
}
E. opencv實現一個人臉檢測功能,編譯出的android程序有多大
在Python下用起來OpenCV很爽,代碼很簡潔,很清晰易懂。使用的是Haar特徵的分類器,訓練之後得到的數據存在一個xml中。下面我們就來詳細談談。 模式識別課上老師留了個實驗,在VC++環境下利用OpenCV庫編程實現人臉檢測與跟蹤。 然後就開始下載opencv和vs2012,再然後,配置了好幾次還是配置不成功,這里不得不吐槽下微軟,軟體做這么大,這么難用真的好嗎? 於是就嘗試了一下使用python完成實驗任務,大概過程就是這樣子的: 首先,配置運行環境: 下載opencv和python的比較新的版本,推薦opencv2.4.X和python2.7.X。 直接去官網下載就ok了,python安裝時一路next就行,下載的opencv.exe文件運行後基本上是一個解壓的過程,自己選擇一個解壓路徑(盡量不要出現中文),然後就坐等解壓完成。 然後從opencv解壓後的路徑中找(D:My DocumentsDownloads)opencvbuildpython2.7x86,()裡面的部分是你自己的安裝路徑,其中x86對應32位的機器,x64代表64位的機器,當然要按照你機器的實際情況選擇了。將這個路徑裡面的cv2.pyd拷貝至python2.7的模塊路徑C:Python27Libsite-packages里,python2.7默認安裝在C盤跟目錄下。 此時打開python,在cmd下輸入python,或者直接打開“所有程序->active state active python->Python Interactive Shell”都行。 接下來輸入import cv2,出錯了對不對?為什麼呢? 這是因為沒有安裝numpy這個python模塊,去numpy的官網下載一個比較新的版本,因為最新的版本一般都是源代碼,需要去命令行中安裝,比較麻煩,推薦找一個exe文件。注意,在官網給出的鏈接中,切記看完全名稱,後面一般都會提示這個模塊在哪個python版本下安裝時比較和諧,選擇你自己安裝的python版本對應的numpy模塊。下載完成後安裝時看一下該模塊給出的python路徑對不對,對的話然後next就行了,不對的話可能就是你的python是2.7,卻下了numpy for python 3.0. 這時再去import一下cv2,如果什麼也沒有輸出的話就是import成功了。 簡直比vs下的配置簡單了好幾個數量級,對不對? 配置好環境後,跟著opencv嗨起來! 然後在pythonwin或idle(python gui)下新建一個py文件,輸入以下代碼: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 import cv2 import numpy as np cv2.namedWindow("test") cap=cv2.VideoCapture(0) success,frame=cap.read() classifier=cv2.CascadeClassifier("haarcascade_frontalface_alt.xml") #確保此xml文件與該py文件在一個文件夾下,否則將這里改為絕對路徑,此xml文件可在D:My 下找到。 while success: success,frame=cap.read() size=frame.shape[:2] image=np.zeros(size,dtype=np.float16) image=cv2.cvtColor(frame,cv2.cv.CV_BGR2GRAY) cv2.equalizeHist(image,image) divisor=8 h,w=size minSize=(w/divisor,h/divisor) faceRects=classifier.detectMultiScale(image,1.2,2,cv2.CASCADE_SCALE_IMAGE,minSize) if len(faceRects)>0: for faceRect in faceRects: x,y,w,h=faceRect cv2.circle(frame,(x+w/2,y+h/2),min(w/2,h/2),(255,0,0)) cv2.circle(frame,(x+w/4,y+h/4),min(w/8,h/8),(255,0,0)) cv2.circle(frame,(x+3*w/4,y+h/4),min(w/8,h/8),(255,0,0)) cv2.rectangle(frame,(x+3*w/8,y+3*h/4),(x+5*w/8,y+7*h/8),(255,0,0)) cv2.imshow("test",frame) key=cv2.waitKey(10) c=chr(key&255) if c in ['q','Q',chr(27)]: break cv2.destroyWindow("test") 為什麼沒有注釋,你恐怕知道下雨天,dir()和help()更配呦。 這段代碼的功能就是對計算機攝像頭拍到的視頻加以處理,使其顯示並追蹤人臉。下圖是運行效果: 最後再說一句,這個過程說起來簡單,但很容易出錯,希望大家能自己找到錯誤的原因,並解決錯誤。如果自己解決不了的話,不妨把問題貼在里,大家來共同解決,共同進步。 以上所述就是本文的全部內容了,希望大家能夠喜歡。
F. 關於Python中 人臉檢測中的問題
打錯了,前面是face後面是faces
G. 人臉識別怎麼弄
你好
你是指使用python來做人臉識別是嗎?
這個其實非常簡單,你只需要使用python裡面的opencv庫,就可以實現。
具體的參考文檔,可以去opencv的官方網站上下載。
我之前有做過類似的項目,不過是基於人工智慧的。使用的是谷歌tensorflow的庫
如果你需要指導,可以找我,我分享一些之前收集的例子給你。
H. opencv用c++還是python好
python更好。
opencv內置支持的主要語言為python和c++,如果你用戶不是特別大)(比如10000次以上的人臉識別每秒),一般python就綽綽有餘了。當然如果是安卓客戶端的話,還是c++或java方便點,如果是後台或者樹莓派之類的,python就更方便。
這里有個python的例子。
opencv 3.3+已經內置了人臉識別功能。
可以很輕松的完成相關畢業設計。
使用OpenCV提供的預先訓練的深度學習面部檢測器模型,可快速,准確的進行人臉識別。
Python優點:
學習難易:Python與C++對比是一門易於學習的語言所以很適合作為第一門語言來學習編程。
可視化調試:Matplotlib進行結果可視化這方法,與C++的窗體調試比起來那是好了很多啊。
I. 如何獲取人臉 68個關鍵點 python代碼
可以使用OpenCV,OpenCV的人臉檢測功能在一般場合還是不錯的。而ubuntu正好提供了python-opencv這個包,用它可以方便地實現人臉檢測的代碼。 寫代碼之前應該先安裝python-opencv: #!/usr/bin/python# -*- coding: UTF-8 -*- # face_detect.py #...
J. 如何使用Python,基於OpenCV與Face++實現人臉解鎖的功能
近幾天微軟的發布會上講到了不少認臉解鎖的內容,經過探索,其實利用手頭的資源我們完全自己也可以完成這樣一個過程。
本文講解了如何使用Python,基於OpenCV與Face++實現人臉解鎖的功能。
本文基於Python 2.7.11,Windows 8.1 系統。
主要內容
Windows 8.1上配置OpenCV
OpenCV的人臉檢測應用
使用Face++完成人臉辨識(如果你想自己實現這部分的功能,可以借鑒例如這個項目)
Windows 8.1上配置OpenCV
入門的時候配置環境總是一個非常麻煩的事情,在Windows上配置OpenCV更是如此。
既然寫了這個推廣的科普教程,總不能讓讀者卡在環境配置上吧。
下面用到的文件都可以在這里(提取碼:b6ec)下載,但是注意,目前OpenCV僅支持Python2.7。
將cv2加入site-packages
將下載下來的cv2.pyd文件放入Python安裝的文件夾下的Libsite-packages目錄。
就我的電腦而言,這個目錄就是C:/Python27/Lib/site-packages/。
記得不要直接使用pip安裝,將文件拖過去即可。
安裝numpy組件
在命令行下進入到下載下來的文件所在的目錄(按住Shift右鍵有在該目錄打開命令行的選項)
鍵入命令:
1
pip install numpy-1.11.0rc2-cp27-cp27m-win32.whl
如果你的系統或者Python不適配,可以在這里下載別的輪子。
測試OpenCV安裝
在命令行鍵入命令:
1
python -c "import cv2"
如果沒有出現錯誤提示,那麼cv2就已經安裝好了。
OpenCV的人臉檢測應用
人臉檢測應用,簡而言之就是一個在照片里找到人臉,然後用方框框起來的過程(我們的相機經常做這件事情)
那麼具體而言就是這樣一個過程:
獲取攝像頭的圖片
在圖片中檢測到人臉的區域
在人臉的區域周圍繪制方框
獲取攝像頭的圖片
這里簡單的講解一下OpenCV的基本操作。
以下操作是打開攝像頭的基本操作:
1
2
3
4
5
6
7
#coding=utf8
import cv2
# 一般筆記本的默認攝像頭都是0
capInput = cv2.VideoCapture(0)
# 我們可以用這條命令檢測攝像頭是否可以讀取數據
if not capInput.isOpened(): print('Capture failed because of camera')
那麼怎麼從攝像頭讀取數據呢?
1
2
3
4
5
6
7
8
# 接上段程序
# 現在攝像頭已經打開了,我們可以使用這條命令讀取圖像
# img就是我們讀取到的圖像,就和我們使用open('pic.jpg', 'rb').read()讀取到的數據是一樣的
ret, img = capInput.read()
# 你可以使用open的方式存儲,也可以使用cv2提供的方式存儲
cv2.imwrite('pic.jpg', img)
# 同樣,你可以使用open的方式讀取,也可以使用cv2提供的方式讀取
img = cv2.imread('pic.jpg')
為了方便顯示圖片,cv2也提供了顯示圖片的方法:
1
2
3
4
5
6
# 接上段程序
# 定義一個窗口,當然也可以不定義
imgWindowName = 'ImageCaptured'
imgWindow = cv2.namedWindow(imgWindowName, cv2.WINDOW_NORMAL)
# 在窗口中顯示圖片
cv2.imshow(imgWindowName, img)
當然在完成所有操作以後需要把攝像頭和窗口都做一個釋放:
1
2
3
4
5
# 接上段程序
# 釋放攝像頭
capInput.release()
# 釋放所有窗口
cv2.destroyAllWindows()
在圖片中檢測到人臉的區域
OpenCV給我們提供了已經訓練好的人臉的xml模板,我們只需要載入然後比對即可。
1
2
3
4
5
6
7
8
# 接上段程序
# 載入xml模板
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# 將圖形存儲的方式進行轉換
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用模板匹配圖形
faces = faceCascade.detectMultiScale(gray, 1.3, 5)
print(faces)
在人臉的區域周圍繪制方框
在上一個步驟中,faces中的四個量分別為左上角的橫坐標、縱坐標、寬度、長度。
所以我們根據這四個量很容易的就可以繪制出方框。
1
2
3
# 接上段程序
# 函數的參數分別為:圖像,左上角坐標,右下角坐標,顏色,寬度
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
成果
根據上面講述的內容,我們現在已經可以完成一個簡單的人臉辨認了:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#coding=utf8
import cv2
print('Press Esc to exit')
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
imgWindow = cv2.namedWindow('FaceDetect', cv2.WINDOW_NORMAL)
def detect_face():
capInput = cv2.VideoCapture(0)
# 避免處理時間過長造成畫面卡頓
nextCaptureTime = time.time()
faces = []
if not capInput.isOpened(): print('Capture failed because of camera')
while 1:
ret, img = capInput.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if nextCaptureTime < time.time():
nextCaptureTime = time.time() + 0.1
faces = faceCascade.detectMultiScale(gray, 1.3, 5)
if faces:
for x, y, w, h in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.imshow('FaceDetect', img)
# 這是簡單的讀取鍵盤輸入,27即Esc的acsii碼
if cv2.waitKey(1) & 0xFF == 27: break
capInput.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
detect_face()
使用Face++完成人臉辨識
第一次認識Face++還是因為支付寶的人臉支付,響應速度還是非常讓人滿意的。
現在只需要免費注冊一個賬號然後新建一個應用就可以使用了,非常方便。
他的官方網址是這個,注冊好之後在這里的我的應用中創建應用即可。
創建好應用之後你會獲得API Key與API Secret。
Face++的API調用邏輯簡單來說是這樣的:
上傳圖片獲取讀取到的人的face_id
創建Person,獲取person_id(Person中的圖片可以增加、刪除)
比較兩個face_id,判斷是否是一個人
比較face_id與person_id,判斷是否是一個人
上傳圖片獲取face_id
在將圖片通過post方法上傳到特定的地址後將返回一個json的值。
如果api_key, api_secret沒有問題,且在上傳的圖片中有識別到人臉,那麼會存儲在json的face鍵值下。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#coding=utf8
import requests
# 這里填寫你的應用的API Key與API Secret
API_KEY = ''
API_SECRET = ''
# 目前的API網址是這個,你可以在API文檔里找到這些
BASE_URL = 'httlus.com/v2'
# 使用Requests上傳圖片
url = '%s/detection/detect?api_key=%s&api_secret=%s&attribute=none'%(
BASE_URL, API_KEY, API_SECRET)
files = {'img': (os.path.basename(fileDir), open(fileDir, 'rb'),
mimetypes.guess_type(fileDir)[0]), }
r = requests.post(url, files = files)
# 如果讀取到圖片中的頭像則輸出他們,其中的'face_id'就是我們所需要的值
faces = r.json().get('face')
print faces
創建Person
這個操作沒有什麼可以講的內容,可以對照這段程序和官方的API介紹。
官方的API介紹可以見這里,相信看完這一段程序以後你就可以自己完成其餘的API了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 上接上一段程序
# 讀取face_id
if not faces is None: faceIdList = [face['face_id'] for face in faces]
# 使用Requests創建Person
url = '%s/person/create'%BASE_URL
params = {
'api_key': API_KEY,
'api_secret': API_SECRET,
'person_name': 'LittleCoder',
'face_id': ','.join(faceIdList), }
r = requests.get(url, params = params)
# 獲取person_id
print r.json.()['person_id']
進度確認
到目前為止,你應該已經可以就給定的兩張圖片比對是否是同一個人了。
那麼讓我們來試著寫一下這個程序吧,兩張圖片分別為』pic1.jpg』, 『pic2.jpg』好了。
下面我給出了我的代碼:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def upload_img(fileDir, oneface = True):
url = '%s/detection/detect?api_key=%s&api_secret=%s&attribute=none'%(
BASE_URL, API_KEY, API_SECRET)
if oneface: url += '&mode=oneface'
files = {'img': (os.path.basename(fileDir), open(fileDir, 'rb'),
mimetypes.guess_type(fileDir)[0]), }
r = requests.post(url, files = files)
faces = r.json().get('face')
if faces is None:
print('There is no face found in %s'%fileDir)
else:
return faces[0]['face_id']
def compare(faceId1, faceId2):
url = '%s/recognition/compare'%BASE_URL
params = BASE_PARAMS
params['face_id1'] = faceId1
params['face_id2'] = faceId2
r = requests.get(url, params)
return r.json()
faceId1 = upload_img('pic1.jpg')
faceId2 = upload_img('pic2.jpg')
if face_id1 and face_id2:
print(compare(faceId1, faceId2))
else:
print('Please change two pictures')
成品
到此,所有的知識介紹都結束了,相比大致如何完成這個項目各位讀者也已經有想法了吧。
下面我們需要構思一下人臉解鎖的思路,大致而言是這樣的:
使用一個程序設置賬戶(包括向賬戶中存儲解鎖用的圖片)
使用另一個程序登陸(根據輸入的用戶名測試解鎖)
這里會有很多重復的代碼,就不再贅述了,你可以在這里或者這里(提取碼:c073)下載源代碼測試使用。
這里是設置賬戶的截圖:
登陸
結束語
希望讀完這篇文章能對你有幫助,有什麼不足之處萬望指正(鞠躬)。