1. python爬蟲必知必會的幾個工具包
爬蟲是學習python有趣途徑,同樣有強大的框架
python自帶的urllib其實使用起來有點麻煩,推薦你使用requests庫,這是一個非常強大,使用方便的庫,而且有全面的中文文檔,網上爬數據爬圖片都不在話下。
還有更高級的庫-scrapy庫。
Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 其可以應用在數據挖掘,信息處理或存儲歷史數據等一系列的程序中。Scrapy 使用了 Twisted非同步網路庫來處理網路通訊。爬取網站數據,當然少不了正則模塊re,還有beautiful soup模塊
re模塊具有強大的處理字元串的能力,但是使用起來並不簡單,因為當你覺得可以使用正則表達式的時候,這本身就是一個問題,因為寫出一個正則表達式就是一個大問題。不過不用怕,在處理網站結構的數據時,有更強大的庫-beautiful soup
Beautiful Soup 是一個可以從HTML或XML文件中提取數據的Python庫,擁有完善的中文文檔,提供了種類繁多的屬性和方法供你選擇,讓你解析網站數據更加的得心應手!
web後端框架django,flask
python在web開發方面也是多面手,既有大而全的框架django,又有小而精的框架flask。
雖說在web開發方面有許多框架,但是最常用的還是這兩種,如果你想做中方面的工作,學好這兩個框架就夠用了,而且,目前的python後端開發的招聘需求多半是要求會這兩個框架。
2. 如何在scrapy框架下,用python實現爬蟲自動跳轉頁面來抓去網頁內容
Scrapy是一個用Python寫的Crawler Framework,簡單輕巧,並且非常方便。Scrapy使用Twisted這個非同步網路庫來處理網路通信,架構清晰,並且包含了各種中間件介面,可以靈活地完成各種需求。Scrapy整體架構如下圖所示:
根據架構圖介紹一下Scrapy中的各大組件及其功能:
Scrapy引擎(Engine):負責控制數據流在系統的所有組建中流動,並在相應動作發生觸發事件。
調度器(Scheler):從引擎接收Request並將它們入隊,以便之後引擎請求request時提供給引擎。
下載器(Downloader):負責獲取頁面數據並提供給引擎,而後提供給Spider。
Spider:Scrapy用戶編寫用於分析Response並提取Item(即獲取到的Item)或額外跟進的URL的類。每個Spider負責處理一個特定(或一些網站)。
Item Pipeline:負責處理被Spider提取出來的Item。典型的處理有清理驗證及持久化(例如存儲到資料庫中,這部分後面會介紹存儲到MySQL中,其他的資料庫類似)。
下載器中間件(Downloader middlewares):是在引擎即下載器之間的特定鉤子(special hook),處理Downloader傳遞給引擎的Response。其提供了一個簡便的機制,通過插入自定義代碼來擴展Scrapy功能(後面會介紹配置一些中間並激活,用以應對反爬蟲)。
Spider中間件(Spider middlewares):是在引擎及Spider之間的特定鉤子(special hook),處理Spider的輸入(response)和輸出(Items即Requests)。其提供了一個簡便的機制,通過插入自定義的代碼來擴展Scrapy功能。
3. 怎麼樣使用Python的Scrapy爬蟲框架
有些人問,開發網路爬蟲應該選擇Nutch、Crawler4j、WebMagic、scrapy、WebCollector還是其他的?這里按照我的經驗隨便扯淡一下:
上面說的爬蟲,基本可以分3類:
1.分布式爬蟲:Nutch
2.JAVA單機爬蟲:Crawler4j、WebMagic、WebCollector
3. 非JAVA單機爬蟲:scrapy
第一類:分布式爬蟲
爬蟲使用分布式,主要是解決兩個問題:
1)海量URL管理
2)網速
現在比較流行的分布式爬蟲,是Apache的Nutch。但是對於大多數用戶來說,Nutch是這幾類爬蟲里,最不好的選擇,理由如下:
1)Nutch是為搜索引擎設計的爬蟲,大多數用戶是需要一個做精準數據爬取(精抽取)的爬蟲。Nutch運行的一套流程里,有三分之二是為了搜索引擎而設計的。對精抽取沒有太大的意義。也就是說,用Nutch做數據抽取,會浪費很多的時間在不必要的計算上。而且如果你試圖通過對Nutch進行二次開發,來使得它適用於精抽取的業務,基本上就要破壞Nutch的框架,把Nutch改的面目全非,有修改Nutch的能力,真的不如自己重新寫一個分布式爬蟲框架了。
2)Nutch依賴hadoop運行,hadoop本身會消耗很多的時間。如果集群機器數量較少,爬取速度反而不如單機爬蟲快。
3)Nutch雖然有一套插件機制,而且作為亮點宣傳。可以看到一些開源的Nutch插件,提供精抽取的功能。但是開發過Nutch插件的人都知道,Nutch的插件系統有多蹩腳。利用反射的機制來載入和調用插件,使得程序的編寫和調試都變得異常困難,更別說在上面開發一套復雜的精抽取系統了。而且Nutch並沒有為精抽取提供相應的插件掛載點。Nutch的插件有隻有五六個掛載點,而這五六個掛載點都是為了搜索引擎服務的,並沒有為精抽取提供掛載點。大多數Nutch的精抽取插件,都是掛載在「頁面解析」(parser)這個掛載點的,這個掛載點其實是為了解析鏈接(為後續爬取提供URL),以及為搜索引擎提供一些易抽取的網頁信息(網頁的meta信息、text文本)。
4)用Nutch進行爬蟲的二次開發,爬蟲的編寫和調試所需的時間,往往是單機爬蟲所需的十倍時間不止。了解Nutch源碼的學習成本很高,何況是要讓一個團隊的人都讀懂Nutch源碼。調試過程中會出現除程序本身之外的各種問題(hadoop的問題、hbase的問題)。
5)很多人說Nutch2有gora,可以持久化數據到avro文件、hbase、mysql等。很多人其實理解錯了,這里說的持久化數據,是指將URL信息(URL管理所需要的數據)存放到avro、hbase、mysql。並不是你要抽取的結構化數據。其實對大多數人來說,URL信息存在哪裡無所謂。
6)Nutch2的版本目前並不適合開發。官方現在穩定的Nutch版本是nutch2.2.1,但是這個版本綁定了gora-0.3。如果想用hbase配合nutch(大多數人用nutch2就是為了用hbase),只能使用0.90版本左右的hbase,相應的就要將hadoop版本降到hadoop 0.2左右。而且nutch2的官方教程比較有誤導作用,Nutch2的教程有兩個,分別是Nutch1.x和Nutch2.x,這個Nutch2.x官網上寫的是可以支持到hbase 0.94。但是實際上,這個Nutch2.x的意思是Nutch2.3之前、Nutch2.2.1之後的一個版本,這個版本在官方的SVN中不斷更新。而且非常不穩定(一直在修改)。
所以,如果你不是要做搜索引擎,盡量不要選擇Nutch作為爬蟲。有些團隊就喜歡跟風,非要選擇Nutch來開發精抽取的爬蟲,其實是沖著Nutch的名氣(Nutch作者是Doug Cutting),當然最後的結果往往是項目延期完成。
如果你是要做搜索引擎,Nutch1.x是一個非常好的選擇。Nutch1.x和solr或者es配合,就可以構成一套非常強大的搜索引擎了。如果非要用Nutch2的話,建議等到Nutch2.3發布再看。目前的Nutch2是一個非常不穩定的版本。
4. 請簡要闡述scrapy框架的幾大組成部分,並解釋每部分的功能
摘要 1、Scrapy:Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。
5. 《精通 Python爬蟲框架 Scrapy》txt下載在線閱讀全文,求百度網盤雲資源
《精通Python爬蟲框架Scrapy》([美]迪米特里奧斯 考奇斯-勞卡斯)電子書網盤下載免費在線閱讀
鏈接:
書名:《精通Python爬蟲框架Scrapy》
作者:[美]迪米特里奧斯 考奇斯-勞卡斯
譯者:李斌
豆瓣評分:5.9
出版社:人民郵電出版社
出版年份:2018-2-1
頁數:239
內容簡介:Scrapy是使用Python開發的一個快速、高層次的屏幕抓取和Web抓取框架,用於抓Web站點並從頁面中提取結構化的數據。《精通Python爬蟲框架Scrapy》以Scrapy 1.0版本為基礎,講解了Scrapy的基礎知識,以及如何使用Python和三方API提取、整理數據,以滿足自己的需求。
本書共11章,其內容涵蓋了Scrapy基礎知識,理解HTML和XPath,安裝Scrapy並爬取一個網站,使用爬蟲填充資料庫並輸出到移動應用中,爬蟲的強大功能,將爬蟲部署到Scrapinghub雲伺服器,Scrapy的配置與管理,Scrapy編程,管道秘訣,理解Scrapy性能,使用Scrapyd與實時分析進行分布式爬取。本書附錄還提供了各種軟體的安裝與故障排除等內容。
本書適合軟體開發人員、數據科學家,以及對自然語言處理和機器學習感興趣的人閱讀。
作者簡介:作者:[美]迪米特里奧斯 考奇斯-勞卡斯(Dimitrios Kouzis-Loukas) 譯者:李斌
Dimitrios Kouzis-Loukas作為一位軟體開發人員,已經擁有超過15年的經驗。同時,他還使用自己掌握的知識和技能,向廣大讀者講授如何編寫軟體。
他學習並掌握了多門學科,包括數學、物理學以及微電子學。他對這些學科的透徹理解,提高了自身的標准,而不只是「實用的解決方案」。他知道真正的解決方案應當是像物理學規律一樣確定,像ECC內存一樣健壯,像數學一樣通用。
Dimitrios目前正在使用新的數據中心技術開發低延遲、高可用的分布式系統。他是語言無關論者,不過對Python、C++和Java略有偏好。他對開源軟硬體有著堅定的信念,他希望他的貢獻能夠造福於各個社區和全人類。
關於譯者
李斌,畢業於北京科技大學計算機科學與技術專業,獲得碩士學位。曾任職於阿里巴巴,當前供職於凡普金科,負責應用安全工作。熱愛Python編程和Web安全,希望以更加智能和自動化的方式提升網路安全。
6. Python編程基礎之(五)Scrapy爬蟲框架
經過前面四章的學習,我們已經可以使用Requests庫、Beautiful Soup庫和Re庫,編寫基本的Python爬蟲程序了。那麼這一章就來學習一個專業的網路爬蟲框架--Scrapy。沒錯,是框架,而不是像前面介紹的函數功能庫。
Scrapy是一個快速、功能強大的網路爬蟲框架。
可能大家還不太了解什麼是框架,爬蟲框架其實是實現爬蟲功能的一個軟體結構和功能組件的集合。
簡而言之, Scrapy就是一個爬蟲程序的半成品,可以幫助用戶實現專業的網路爬蟲。
使用Scrapy框架,不需要你編寫大量的代碼,Scrapy已經把大部分工作都做好了,允許你調用幾句代碼便自動生成爬蟲程序,可以節省大量的時間。
當然,框架所生成的代碼基本是一致的,如果遇到一些特定的爬蟲任務時,就不如自己使用Requests庫搭建來的方便了。
PyCharm安裝
測試安裝:
出現框架版本說明安裝成功。
掌握Scrapy爬蟲框架的結構是使用好Scrapy的重中之重!
先上圖:
整個結構可以簡單地概括為: 「5+2」結構和3條數據流
5個主要模塊(及功能):
(1)控制所有模塊之間的數據流。
(2)可以根據條件觸發事件。
(1)根據請求下載網頁。
(1)對所有爬取請求進行調度管理。
(1)解析DOWNLOADER返回的響應--response。
(2)產生爬取項--scraped item。
(3)產生額外的爬取請求--request。
(1)以流水線方式處理SPIDER產生的爬取項。
(2)由一組操作順序組成,類似流水線,每個操作是一個ITEM PIPELINES類型。
(3)清理、檢查和查重爬取項中的HTML數據並將數據存儲到資料庫中。
2個中間鍵:
(1)對Engine、Scheler、Downloader之間進行用戶可配置的控制。
(2)修改、丟棄、新增請求或響應。
(1)對請求和爬取項進行再處理。
(2)修改、丟棄、新增請求或爬取項。
3條數據流:
(1):圖中數字 1-2
1:Engine從Spider處獲得爬取請求--request。
2:Engine將爬取請求轉發給Scheler,用於調度。
(2):圖中數字 3-4-5-6
3:Engine從Scheler處獲得下一個要爬取的請求。
4:Engine將爬取請求通過中間件發送給Downloader。
5:爬取網頁後,Downloader形成響應--response,通過中間件發送給Engine。
6:Engine將收到的響應通過中間件發送給Spider處理。
(3):圖中數字 7-8-9
7:Spider處理響應後產生爬取項--scraped item。
8:Engine將爬取項發送給Item Pipelines。
9:Engine將爬取請求發送給Scheler。
任務處理流程:從Spider的初始爬取請求開始爬取,Engine控制各模塊數據流,不間斷從Scheler處獲得爬取請求,直至請求為空,最後到Item Pipelines存儲數據結束。
作為用戶,只需配置好Scrapy框架的Spider和Item Pipelines,也就是數據流的入口與出口,便可完成一個爬蟲程序的搭建。Scrapy提供了簡單的爬蟲命令語句,幫助用戶一鍵配置剩餘文件,那我們便來看看有哪些好用的命令吧。
Scrapy採用命令行創建和運行爬蟲
PyCharm打開Terminal,啟動Scrapy:
Scrapy基本命令行格式:
具體常用命令如下:
下面用一個例子來學習一下命令的使用:
1.建立一個Scrapy爬蟲工程,在已啟動的Scrapy中繼續輸入:
執行該命令,系統會在PyCharm的工程文件中自動創建一個工程,命名為pythonDemo。
2.產生一個Scrapy爬蟲,以教育部網站為例http://www.moe.gov.cn:
命令生成了一個名為demo的spider,並在Spiders目錄下生成文件demo.py。
命令僅用於生成demo.py文件,該文件也可以手動生成。
觀察一下demo.py文件:
3.配置產生的spider爬蟲,也就是demo.py文件:
4.運行爬蟲,爬取網頁:
如果爬取成功,會發現在pythonDemo下多了一個t20210816_551472.html的文件,我們所爬取的網頁內容都已經寫入該文件了。
以上就是Scrapy框架的簡單使用了。
Request對象表示一個HTTP請求,由Spider生成,由Downloader執行。
Response對象表示一個HTTP響應,由Downloader生成,有Spider處理。
Item對象表示一個從HTML頁面中提取的信息內容,由Spider生成,由Item Pipelines處理。Item類似於字典類型,可以按照字典類型來操作。
7. 求幫忙解釋一下下面兩段Python代碼的基於scrapy的網路爬蟲框架
簡單的理解就是:
第一段解析網頁內容,並提取需要的數據(這里涉及到很多python的基礎知識);
第二段是將提取到的數據保存到文件。
8. 如何快速學習爬蟲框架Scrapy
對於規模小、爬取數據量小、對爬取速度不敏感的爬蟲程序, 使用 Requests 能輕松搞定。這些爬蟲程序主要功能是爬取網頁、玩轉網頁。如果我們需要爬取網站以及系列網站,要求爬蟲具備爬取失敗能復盤、爬取速度較高等特點。很顯然 Requests 不能完全滿足我們的需求。因此,需要一功能更加強大的第三方爬蟲框架庫 —— Scrapy
HTML, XML源數據 選擇及提取 的內置支持
提供了一系列在spider之間共享的可復用的過濾器(即 Item Loaders),對智能處理爬取數據提供了內置支持。
通過 feed導出 提供了多格式(JSON、CSV、XML),多存儲後端(FTP、S3、本地文件系統)的內置支持
提供了media pipeline,可以 自動下載 爬取到的數據中的圖片(或者其他資源)。
高擴展性。您可以通過使用 signals ,設計好的API(中間件, extensions, pipelines)來定製實現您的功能。
內置的中間件及擴展為下列功能提供了支持:
cookies and session 處理
HTTP 壓縮
HTTP 認證
HTTP 緩存
user-agent模擬
robots.txt
爬取深度限制
健壯的編碼支持和自動識別,用於處理外文、非標准和錯誤編碼問題
針對多爬蟲下性能評估、失敗檢測,提供了可擴展的 狀態收集工具 。
內置 Web service, 使您可以監視及控制您的機器。
9. python分布式爬蟲scrapy框架怎麼寫
scrapy是目前非常熱門的一種爬蟲框架,它把整個爬蟲過程分為了多個獨立的模塊,並提供了多個基類可以供我們去自由擴展,讓爬蟲編寫變得簡單而有邏輯性。
並且scrapy自帶的多線程、異常處理、以及強大的自定義Settings也讓整個數據抓取過程變得高效而穩定。