1. 用戶在編輯中可以使用3種操作方式來創 建—個新的工作薄,請詳細寫出哪三種操
從三個方面來說:一對象的引用計數機制,二垃圾回收機制,三內存池機制。
一、對象的引用計數機制
python內部使用引用計數,來保持追蹤內存中的對象,所有對象都有引用計數。
引用計數增加的情況:
1、一個對象分配一個新名稱
2、將其放入一個容器中(如列表、元組或字典)
sys.getrefcount( )函數可以獲得對象的當前引用計數;多數情況下,引用計數比你猜測得要大得多。對於不可變數據(如數字和字元串),解釋器會在程序的不同部分共享內存,以便節約內存。
二、垃圾回收機制
1、當一個對象的引用計數歸零時,它將被垃圾收集機制處理掉。
2、當兩個對象a和b相互引用時,del語句可以減少a和b的引用計數,並銷毀用於引用底層對象的名稱。然而由於每個對象都包含一個對其他對象的應用,因此引用計數不會歸零,對象也不會銷毀。
三、內存池機制
Python提供了對內存的垃圾收集機制,但是它將不用的內存放到內存池而不是返回給操作系統。
Pymalloc機制。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。Python中所有小於256個位元組的對象都使用pymalloc實現的分配器,而大的對象則使用系統的malloc。
(1)python字元共享池擴展閱讀:
Python使用y if cond else x表示條件表達式。意思是當cond為真時,表達式的值為y,否則表達式的值為x。相當於C++和Java里的cond?y:x。
Python區分列表(list)和元組(tuple)兩種類型。list的寫法是[1,2,3],而tuple的寫法是(1,2,3)。可以改變list中的元素,而不能改變tuple。在某些情況下,tuple的括弧可以省略。tuple對於賦值語句有特殊的處理。
Python使用'(單引號)和"(雙引號)來表示字元串。與Perl、Unix Shell語言或者Ruby、Groovy等語言不一樣,兩種符號作用相同。一般地,如果字元串中出現了雙引號,就使用單引號來表示字元串;反之則使用雙引號。如果都沒有出現,就依個人喜好選擇。
出現在字元串中的(反斜杠)被解釋為特殊字元,比如 表示換行符。表達式前加r指示Python不解釋字元串中出現的。這種寫法通常用於編寫正則表達式或者Windows文件路徑。
2. python中,為什麼採取賦值共享內存的方式
通過share memory 取對象的例子, c write object into memory map, python read it by call dll api.
So there still questions you should consider how to guarantee the process share security. Good luck..
----python part----
3. Python該怎麼入門
作為初學者,第一個月的月目標應該是這樣的:
熟悉基本概念(變數,條件,列表,循環,函數)
練習超過 30 個編程問題
利用這些概念完成兩個項目
熟悉至少 2 個框架
開始使用集成開發環境(IDE),Github,hosting,services 等
整體計劃
現在,我們先將月計劃細化成周計劃。
第一周:熟悉 Python
要積極探索 Python 的使用方法,盡可能多的完成下面這些任務:
第一天:基本概念(4 小時):print,變數,輸入,條件語句
第二天:基本概念(5 小時):列表,for 循環,while 循環,函數,導入模塊
第三天:簡單編程問題(5 小時):交換兩個變數值,將攝氏度轉換為華氏溫度,求數字中各位數之和,判斷某數是否為素數,生成隨機數,刪除列表中的重復項等等
第四天:中級編程問題(6 小時):反轉一個字元串(迴文檢測),計算最大公約數,合並兩個有序數組,猜數字游戲,計算年齡等等
第五天:數據結構(6 小時):棧,隊列,字典,元組,樹,鏈表。
第六天:面向對象編程(OOP)(6 小時):對象,類,方法和構造函數,面向對象編程之繼承
第七天:演算法(6 小時):搜索(線性和二分查找)、排序(冒泡排序、選擇排序)、遞歸函數(階乘、斐波那契數列)、時間復雜度(線性、二次和常量)
通過第一周時間,python大致能熟悉了,自學能力稍微弱一點找人帶下你,節約自己的時間。
注意:別急著安裝 Python 環境!
這看起來很矛盾,但是你一定要相信我。我有幾個朋友,他們因為語言工具包和 IDE 安裝的失敗而逐漸失去了學習下去的慾望。因此,我的建議是先使用一些安卓 app 來探索這門語言,如果你是個技術小白,安裝 Python 環境可不是你的首要任務。
第二周:開始軟體開發(構建項目)
接下來,讓我們朝著軟體開發任務進軍吧!不妨嘗試綜合你學到的知識完成一個實際的項目:
第一天:熟悉一種 IDE(5 小時): IDE 是你在編寫大型項目時的操作環境,所以你需要精通一個 IDE。在軟體開發的初期,我建議你在 VS code 中安裝 Python 擴展或使用 Jupyter notebook。
第二天:Github(6 小時):探索 Github,並創建一個代碼倉庫。嘗試提交(Commit)、查看變更(Diff)和上推(Push)你的代碼。另外,還要學習如何利用分支工作,如何合並(merge)不同分支以及如何在一個項目中創建拉取請求(pull request)。
第三天:第一個項目——簡單計算器(4 小時):熟悉 Tkinter,創建一個簡單的計算器
第四、五、六天:個人項目(每天 5 小時):選定一個項目並完成它。如果你不知道你該做什麼,可以查看下面的清單(https://www.quora.com/what-some-good pythonprojects -for-an- middle - programmer/answer/jhankar - mahbub2)
第七天:託管項目(5 小時):學習使用伺服器和 hosting 服務來託管你的項目。創建一個 Heroku 設置並部署你構建的應用程序。
為什麼要寫項目?
如果僅僅按部就班地學習課堂上或視頻中的內容,你無法擁有獨立思考能力。所以,你必須把你的知識應用到一個項目中。當你努力尋找答案時,你也在慢慢地學會這些知識。
第三周:讓自己成為一名程序員
第 3 周的目標是熟悉軟體開發的整體過程。你不需要掌握所有的知識,但是你應該知道一些常識,因為它們會影響你的日常工作。
第一天:資料庫基礎(6 小時):基本 SQL 查詢(創建表、選擇、Where 查詢、更新)、SQL 函數(Avg、Max、Count)、關系資料庫(規范化)、內連接、外連接等
第二天:使用 Python 資料庫(5 小時):利用一種資料庫框架(SQLite 或 panda),連接到一個資料庫,在多個表中創建並插入數據,再從表中讀取數據。
第三天:API(5 小時):如何調用 API。學習 JSON、微服務(micro-service)以及表現層應用程序轉換應用程序介面(Rest API)。
第四天:Numpy(4 小時):熟悉 Numpy(https://towardsdatascience.com/lets-talk-about- Numpy -for- datascies-beginners-b8088722309f)並練習前 30 個 Numpy 習題(https://github.com/rougier/numpy- 100/blob/master/100_numpy_excercises.md)
第五、六天:作品集網站(一天 5 小時):學習 Django,使用 Django 構建一個作品集網站(https://realpython.com/get- start-with-django -1/),也要了解一下 Flask 框架。
第七天:單元測試、日誌、調試(5 小時):學習單元測試(PyTest),如何設置和查看日誌,以及使用斷點調試。
真心話時間(絕密)
如果你非常「瘋狂」,並且非常專注,你可以在一個月內完成這些任務。你必須做到:
把學習 Python 作為你的全職活動。你需要從早上 8 點開始學習,一直到下午 5 點。在此期間,你可以有一個午休時間和茶歇時間(共 1 小時)。
8 點列出你今天要學的東西,然後花一個小時復習和練習你昨天學過的東西。
從 9 點到 12 點:開始學習,並進行少量練習。在午飯後,你需要加大練習量,如果你卡在某個問題上,可以在網上搜索解決方案。
嚴格保持每天 4-5 小時的學習時間和 2-3 小時的練習時間(每周最多可以休息一天)。
你的朋友可能會認為你瘋了。走自己的路,讓別人去說吧!
如果你有一份全職工作,或者你是一名學生,完成這些流程可能需要更長的時間。作為一名全日制學生,我花了 8 個月的時間來完成這份清單。現在我是一名高級開發人員。所以,不管花多長時間,一定要完成它們。要想成功完成一個目標,必須付出百分之百的努力。
第四周:認真考慮工作(實習)問題
第 4 周的目標是認真思考如何才能被錄用。即使你現在不想找工作,你也可以在探索這條道路的過程中學到很多東西。
第一天:准備簡歷(5 小時):製作一份一頁的簡歷。把你的技能總結放在最上面,必須在寫項目的同時附上 Github 鏈接。
第二天:作品集網站(6 小時):寫幾個博客,將它們添加到你之前開發的作品集網站中。
第三天:LinkedIn 簡介(4 小時):創建一個 LinkedIn 個人簡介,把簡歷上的所有內容都放到 LinkedIn 上。
第四天:面試准備(7 小時):准備一些谷歌常見的面試問題,練習白皮書中的 10 個面試編程問題。在 Glassdoor、Careercup 等網站中查看前人遇到的面試問題。
第五天:社交(~小時):走出房門,開始參加聚會、招聘會,與其他開發人員和招聘人員見面。
第六天:工作申請(~小時):搜索「Python Job」,查看 LinkedIn Job 和本地求職網站。選擇 3 個工作崗位並發送工作申請。為每個工作定製你的簡歷。在每個工作要求中找出 2 到 3 件你不知道的事情,並在接下來的 3-4 天里學會它們。
第七天:在拒絕中學習(~小時):每次你被拒絕的時候,找出兩件為了獲得這份工作你應該知道的事情,然後花 4-5 天 的時間來掌握它們。這樣,每次拒絕都會讓你成為更好的開發人員。
4. 可以讓你快速用Python進行數據分析的10個小技巧
一些小提示和小技巧可能是非常有用的,特別是在編程領域。有時候使用一點點黑客技術,既可以節省時間,還可能挽救「生命」。
一個小小的快捷方式或附加組件有時真是天賜之物,並且可以成為真正的生產力助推器。所以,這里有一些小提示和小技巧,有些可能是新的,但我相信在下一個數據分析項目中會讓你非常方便。
Pandas中數據框數據的Profiling過程
Profiling(分析器)是一個幫助我們理解數據的過程,而Pandas Profiling是一個Python包,它可以簡單快速地對Pandas 的數據框數據進行 探索 性數據分析。
Pandas中df.describe()和df.info()函數可以實現EDA過程第一步。但是,它們只提供了對數據非常基本的概述,對於大型數據集沒有太大幫助。 而Pandas中的Profiling功能簡單通過一行代碼就能顯示大量信息,且在互動式HTML報告中也是如此。
對於給定的數據集,Pandas中的profiling包計算了以下統計信息:
由Pandas Profiling包計算出的統計信息包括直方圖、眾數、相關系數、分位數、描述統計量、其他信息——類型、單一變數值、缺失值等。
安裝
用pip安裝或者用conda安裝
pip install pandas-profiling
conda install -c anaconda pandas-profiling
用法
下面代碼是用很久以前的泰坦尼克數據集來演示多功能Python分析器的結果。
#importing the necessary packages
import pandas as pd
import pandas_profiling
df = pd.read_csv('titanic/train.csv')
pandas_profiling.ProfileReport(df)
一行代碼就能實現在Jupyter Notebook中顯示完整的數據分析報告,該報告非常詳細,且包含了必要的圖表信息。
還可以使用以下代碼將報告導出到互動式HTML文件中。
profile = pandas_profiling.ProfileReport(df)
profile.to_file(outputfile="Titanic data profiling.html")
Pandas實現互動式作圖
Pandas有一個內置的.plot()函數作為DataFrame類的一部分。但是,使用此功能呈現的可視化不是互動式的,這使得它沒那麼吸引人。同樣,使用pandas.DataFrame.plot()函數繪制圖表也不能實現交互。 如果我們需要在不對代碼進行重大修改的情況下用Pandas繪制互動式圖表怎麼辦呢?這個時候就可以用Cufflinks庫來實現。
Cufflinks庫可以將有強大功能的plotly和擁有靈活性的pandas結合在一起,非常便於繪圖。下面就來看在pandas中如何安裝和使用Cufflinks庫。
安裝
pip install plotly
# Plotly is a pre-requisite before installing cufflinks
pip install cufflinks
用法
#importing Pandas
import pandas as pd
#importing plotly and cufflinks in offline mode
import cufflinks as cf
import plotly.offline
cf.go_offline()
cf.set_config_file(offline=False, world_readable=True)
是時候展示泰坦尼克號數據集的魔力了。
df.iplot()
df.iplot() vs df.plot()
右側的可視化顯示了靜態圖表,而左側圖表是互動式的,更詳細,並且所有這些在語法上都沒有任何重大更改。
Magic命令
Magic命令是Jupyter notebook中的一組便捷功能,旨在解決標准數據分析中的一些常見問題。使用命令%lsmagic可以看到所有的可用命令。
所有可用的Magic命令列表
Magic命令有兩種:行magic命令(line magics),以單個%字元為前綴,在單行輸入操作;單元magic命令(cell magics),以雙%%字元為前綴,可以在多行輸入操作。如果設置為1,則不用鍵入%即可調用Magic函數。
接下來看一些在常見數據分析任務中可能用到的命令:
% pastebin
%pastebin將代碼上傳到Pastebin並返回url。Pastebin是一個在線內容託管服務,可以存儲純文本,如源代碼片段,然後通過url可以與其他人共享。事實上,Github gist也類似於pastebin,只是有版本控制。
在file.py文件中寫一個包含以下內容的python腳本,並試著運行看看結果。
#file.py
def foo(x):
return x
在Jupyter Notebook中使用%pastebin生成一個pastebin url。
%matplotlib notebook
函數用於在Jupyter notebook中呈現靜態matplotlib圖。用notebook替換inline,可以輕松獲得可縮放和可調整大小的繪圖。但記得這個函數要在導入matplotlib庫之前調用。
%run
用%run函數在notebook中運行一個python腳本試試。
%run file.py
%%writefile
%% writefile是將單元格內容寫入文件中。以下代碼將腳本寫入名為foo.py的文件並保存在當前目錄中。
%%latex
%%latex函數將單元格內容以LaTeX形式呈現。此函數對於在單元格中編寫數學公式和方程很有用。
查找並解決錯誤
互動式調試器也是一個神奇的功能,我把它單獨定義了一類。如果在運行代碼單元時出現異常,請在新行中鍵入%debug並運行它。 這將打開一個互動式調試環境,它能直接定位到發生異常的位置。還可以檢查程序中分配的變數值,並在此處執行操作。退出調試器單擊q即可。
Printing也有小技巧
如果您想生成美觀的數據結構,pprint是首選。它在列印字典數據或JSON數據時特別有用。接下來看一個使用print和pprint來顯示輸出的示例。
讓你的筆記脫穎而出
我們可以在您的Jupyter notebook中使用警示框/注釋框來突出顯示重要內容或其他需要突出的內容。注釋的顏色取決於指定的警報類型。只需在需要突出顯示的單元格中添加以下任一代碼或所有代碼即可。
藍色警示框:信息提示
<p class="alert alert-block alert-info">
<b>Tip:</b> Use blue boxes (alert-info) for tips and notes.
If it』s a note, you don』t have to include the word 「Note」.
</p>
黃色警示框:警告
<p class="alert alert-block alert-warning">
<b>Example:</b> Yellow Boxes are generally used to include additional examples or mathematical formulas.
</p>
綠色警示框:成功
<p class="alert alert-block alert-success">
Use green box only when necessary like to display links to related content.
</p>
紅色警示框:高危
<p class="alert alert-block alert-danger">
It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.
</p>
列印單元格所有代碼的輸出結果
假如有一個Jupyter Notebook的單元格,其中包含以下代碼行:
In [1]: 10+5
11+6
Out [1]: 17
單元格的正常屬性是只列印最後一個輸出,而對於其他輸出,我們需要添加print()函數。然而通過在notebook頂部添加以下代碼段可以一次列印所有輸出。
添加代碼後所有的輸出結果就會一個接一個地列印出來。
In [1]: 10+5
11+6
12+7
Out [1]: 15
Out [1]: 17
Out [1]: 19
恢復原始設置:
InteractiveShell.ast_node_interactivity = "last_expr"
使用'i'選項運行python腳本
從命令行運行python腳本的典型方法是:python hello.py。但是,如果在運行相同的腳本時添加-i,例如python -i hello.py,就能提供更多優勢。接下來看看結果如何。
首先,即使程序結束,python也不會退出解釋器。因此,我們可以檢查變數的值和程序中定義的函數的正確性。
其次,我們可以輕松地調用python調試器,因為我們仍然在解釋器中:
import pdb
pdb.pm()
這能定位異常發生的位置,然後我們可以處理異常代碼。
自動評論代碼
Ctrl / Cmd + /自動注釋單元格中的選定行,再次命中組合將取消注釋相同的代碼行。
刪除容易恢復難
你有沒有意外刪除過Jupyter notebook中的單元格?如果答案是肯定的,那麼可以掌握這個撤消刪除操作的快捷方式。
如果您刪除了單元格的內容,可以通過按CTRL / CMD + Z輕松恢復它。
如果需要恢復整個已刪除的單元格,請按ESC + Z或EDIT>撤消刪除單元格。
結論
在本文中,我列出了使用Python和Jupyter notebook時收集的一些小提示。我相信它們會對你有用,能讓你有所收獲,從而實現輕松編碼!
5. python的內存管理機制
論壇
活動
招聘
專題
打開CSDN APP
Copyright © 1999-2020, CSDN.NET, All Rights Reserved
登錄
XCCS_澍
關注
Python 的內存管理機制及調優手段? 原創
2018-08-05 06:50:53
XCCS_澍
碼齡7年
關注
內存管理機制:引用計數、垃圾回收、內存池。
一、引用計數:
引用計數是一種非常高效的內存管理手段, 當一個 Python 對象被引用時其引用計數增加 1, 當其不再被一個變數引用時則計數減 1. 當引用計數等於 0 時對象被刪除。
二、垃圾回收 :
1. 引用計數
引用計數也是一種垃圾收集機制,而且也是一種最直觀,最簡單的垃圾收集技術。當 Python 的某個對象的引用計數降為 0 時,說明沒有任何引用指向該對象,該對象就成為要被回收的垃圾了。比如某個新建對象,它被分配給某個引用,對象的引用計數變為 1。如果引用被刪除,對象的引用計數為 0,那麼該對象就可以被垃圾回收。不過如果出現循環引用的話,引用計數機制就不再起有效的作用了
2. 標記清除
如果兩個對象的引用計數都為 1,但是僅僅存在他們之間的循環引用,那麼這兩個對象都是需要被回收的,也就是說,它們的引用計數雖然表現為非 0,但實際上有效的引用計數為 0。所以先將循環引用摘掉,就會得出這兩個對象的有效計數。
3. 分代回收
從前面「標記-清除」這樣的垃圾收集機制來看,這種垃圾收集機制所帶來的額外操作實際上與系統中總的內存塊的數量是相關的,當需要回收的內存塊越多時,垃圾檢測帶來的額外操作就越多,而垃圾回收帶來的額外操作就越少;反之,當需回收的內存塊越少時,垃圾檢測就將比垃圾回收帶來更少的額外操作。
6. Python內存駐留機制
字元串駐留機制在許多面向對象編程語言中都支持,比如Java、python、Ruby、PHP等,它是一種數據緩存機制,對不可變數據類型使用同一個內存地址,有效的節省了空間,本文主要介紹Python的內存駐留機制。
字元串駐留就是每個字元串只有一個副本,多個對象共享該副本,駐留只針對不可變數據類型,比如字元串,布爾值,數字等。在這些固定數據類型處理中,使用駐留可以有效節省時間和空間,當然在駐留池中創建或者插入新的內容會消耗一定的時間。
下面舉例介紹python中的駐留機制。
在Python對象及內存管理機制一文中介紹了python的參數傳遞以及以及內存管理機制,來看下面一段代碼:
知道結果是什麼嗎?下面是執行結果:
l1和l2內容相同,卻指向了不同的內存地址,l2和l3之間使用等號賦值,所以指向了同一個對象。因為列表是可變對象,每創建一個列表,都會重新分配內存,列表對象是沒有「內存駐留」機制的。下面來看不可變數據類型的駐留機制。
在 Jupyter或者控制台交互環境 中執行下面代碼:
執行結果:
可以發現a1和b1指向了不同的地址,a2和b2指向了相同的地址,這是為什麼呢?
因為啟動時,Python 將一個 -5~256 之間整數列表預載入(緩存)到內存中,我們在這個范圍內創建一個整數對象時,python會自動引用緩存的對象,不會創建新的整數對象。
浮點型不支持:
如果上面的代碼在非交互環境,也就是將代碼作為python腳本運行的結果是什麼呢?(運行環境為python3.7)
全為True,沒有明確的限定臨界值,都進行了駐留操作。這是因為使用不同的環境時,代碼的優化方式不同。
在 Jupyter或者控制台交互環境 中:
滿足標識符命名規范的字元:
結果:
乘法獲取字元串(運行環境為python3.7)
結果:
在非交互環境中:
注意: 字元串是在編譯時進行駐留 ,也就是說,如果字元串的值不能在編譯時進行計算,將不會駐留。比如下面的例子:
在交互環境執行結果如下:
都指向不同的內存。
python 3.7 非交互環境執行結果:
發現d和e指向不同的內存,因為d和e不是在編譯時計算的,而是在運行時計算的。前面的 a = 'aa'*50 是在編譯時計算的。
除了上面介紹的python默認的駐留外,可以使用sys模塊中的intern()函數來指定駐留內容
結果:
使用intern()後,都指向了相同的地址。
本文主要介紹了python的內存駐留,內存駐留是python優化的一種策略,注意不同運行環境下優化策略不一樣,不同的python版本也不相同。注意字元串是在編譯時進行駐留。
--THE END--
7. python怎麼進行內存管理的
Python作為一種動態類型的語言,其對象和引用分離。這與曾經的面向過程語言有很大的區別。為了有效的釋放內存,Python內置了垃圾回收的支持。Python採取了一種相對簡單的垃圾回收機制,即引用計數,並因此需要解決孤立引用環的問題。Python與其它語言既有共通性,又有特別的地方。對該內存管理機制的理解,是提高Python性能的重要一步。
8. Python如何進行內存管理
Python是如何進行內存管理的?
答:從三個方面來說,一對象的引用計數機制,二垃圾回收機制,三內存池機制。
一、對象的引用計數機制
Python內部使用引用計數,來保持追蹤內存中的對象,所有對象都有引用計數。
引用計數增加的情況:
1,一個對象分配一個新名稱
2,將其放入一個容器中(如列表、元組或字典)
引用計數減少的情況:
1,使用del語句對對象別名顯示的銷毀
2,引用超出作用域或被重新賦值
Sys.getrefcount( )函數可以獲得對象的當前引用計數
多數情況下,引用計數比你猜測得要大得多。對於不可變數據(如數字和字元串),解釋器會在程序的不同部分共享內存,以便節約內存。
相關推薦:《Python視頻教程》
二、垃圾回收
1,當一個對象的引用計數歸零時,它將被垃圾收集機制處理掉。
2,當兩個對象a和b相互引用時,del語句可以減少a和b的引用計數,並銷毀用於引用底層對象的名稱。然而由於每個對象都包含一個對其他對象的應用,因此引用計數不會歸零,對象也不會銷毀。(從而導致內存泄露)。為解決這一問題,解釋器會定期執行一個循環檢測器,搜索不可訪問對象的循環並刪除它們。
三、內存池機制
Python提供了對內存的垃圾收集機制,但是它將不用的內存放到內存池而不是返回給操作系統。
1,Pymalloc機制。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
2,Python中所有小於256個位元組的對象都使用pymalloc實現的分配器,而大的對象則使用系統的malloc。
3,對於Python對象,如整數,浮點數和List,都有其獨立的私有內存池,對象間不共享他們的內存池。也就是說如果你分配又釋放了大量的整數,用於緩存這些整數的內存就不能再分配給浮點數。
9. Python是什麼Python可以干什麼
Python(發音:英[ˈpaɪθən],美[ˈpaɪθɑ:n]),是一種易學且功能強大的編程語言。
這種語言的名字(Python意為「蟒蛇」)來自於BBC節目「Monty Python的飛行馬戲團」,而與爬行動物沒有關系。在文檔中用Monty Python來開玩笑不只是可以的,還是可以推薦的!
Python具有高級有效的數據結構和簡單有效的面向對象編程。
Python優雅的語法和動態類型,加上它的解釋性,使它成為很多編程平台開放開源和快速開發應用的理想語言。
Python 解釋器及豐富的標准庫以源碼或機器碼的形式提供,可以到 Python 官網 www.python.org 免費獲取。在下載時要注意你所使用的操作系統類型。在這個官方網站上還提供了許多免費的第三方 Python 模塊、程序和工具以及附加文檔的發布頁面或鏈接。
Python很容易使用,但它是一種真正的編程語言,提供了很多數據結構,也支持大型程序,遠超shell腳本或批處理文件的功能。Python還提供比C語言更多的錯誤檢查,而且作為一種「超高級語言」,它有高級的內置數據類型,比如靈活的數組和字典。正因為這些更加通用的數據類型,Python能夠應付更多的問題,超過Awk甚至Perl,而且很多東西在Python中至少和那些語言同樣簡單。
Python 允許你劃分程序模塊,在其他的 Python 程序中重用。它內置了很多的標准模塊,你可以在此基礎上開發程序——也可以作為例子,開始學習 Python 編程。例如,文件輸入輸出,系統調用,套接字,甚至圖形界面介面工作包比如 Tk 。
Python是一種解釋型語言,在程序開發階段可以為你節省大量時間,因為不需要編譯和鏈接。解釋器可以互動式使用,這樣就可以方便地嘗試語言特性,寫一些一次性的程序,或者在自下向上的程序開發中測試功能。
Python也是一個順手的桌面計算器。
Python程序的書寫是緊湊而易讀的。Python代碼通常比同樣功能的C,C++,Java代碼要短很多,原因列舉如下:
(1)高級數據類型允許在一個表達式中表示復雜的操作;
(2)代碼塊的劃分是按照縮進而不是成對的花括弧;
(3)不需要預先定義變數或參數。
Python是「可擴展的」:如果你知道怎麼寫C語言程序,就能很容易地給解釋器添加新的內置函數或模塊,不論是讓關鍵的程序以最高速度運行,還是把Python程序鏈接到只提供預編譯程序的庫(比如硬體相關的圖形庫)。一旦你真正鏈接上了,就能在Python解釋器中擴展或者控制C語言編寫的應用了。
Python本身提供了非常完善的基礎代碼庫,覆蓋了網路、文件、GUI、資料庫、文本等大量內容。所以,使用Python開發程序,你不必從0開始做,使用基礎代碼庫或第三方庫就可以輕松幫助你完成大量的工作。
在實際中,許多大型網站就是用Python開發的,例如YouTube、Instagram,還有國內的豆瓣。很多大公司,包括Google、Yahoo等,甚至NASA(美國航空航天局)都在大量地使用Python。因此,你學習或使用Python並不孤單。
但是,Python並不是完美的,也並非萬能的。它的第一個缺點就是運行速度慢,由於Python是解釋型語言,與其它編譯型語言比起來要慢得多,不過當前的計算機硬體和網路設備的性能改善很多,而且很多情況下,你不需要那麼快的速度去做工作,Python的慢性子是可以忍受的。
它的第二個缺點就是代碼是可見的,你編寫的Python程序共享給其他人時,其他人是可以看到源代碼的,這一方面是由於Python的宗旨是開源共享,另外一方面是它是解釋型的,拿過來,用你的Python解釋器直接解釋運行就可以了,沒必要封裝編譯成機器代碼。
(註:本文整理了官方文檔與網路其它文檔中的一些內容)
本號將在今後逐步發布Python方面的文章,希望你能收藏關注本號,有空來看看,留下你的足跡,給本站前行的動力。
微信搜索 「優雅的代碼」 關注本站的公眾號,以獲取最新內容。
個人成長離不開各位的關注,你的關注就是我繼續前行的動力。
10. python如何進行內存管理
Python的內存管理主要有三種機制:引用計數機制,垃圾回收機制和內存池機制。
引用計數機制
簡介
python內部使用引用計數,來保持追蹤內存中的對象,Python內部記錄了對象有多少個引用,即引用計數,當對象被創建時就創建了一個引用計數,當對象不再需要時,這個對象的引用計數為0時,它被垃圾回收。
特性
1.當給一個對象分配一個新名稱或者將一個對象放入一個容器(列表、元組或字典)時,該對象的引用計數都會增加。
2.當使用del對對象顯示銷毀或者引用超出作用於或者被重新賦值時,該對象的引用計數就會減少。
3.可以使用sys.getrefcount()函數來獲取對象的當前引用計數。多數情況下,引用計數要比我們猜測的大的多。對於不可變數據(數字和字元串),解釋器會在程序的不同部分共享內存,以便節約內存。
垃圾回收機制
特性
1.當內存中有不再使用的部分時,垃圾收集器就會把他們清理掉。它會去檢查那些引用計數為0的對象,然後清除其在內存的空間。當然除了引用計數為0的會被清除,還有一種情況也會被垃圾收集器清掉:當兩個對象相互引用時,他們本身其他的引用已經為0了。
2.垃圾回收機制還有一個循環垃圾回收器, 確保釋放循環引用對象(a引用b, b引用a, 導致其引用計數永遠不為0)。
內存池機制
簡介
在Python中,許多時候申請的內存都是小塊的內存,這些小塊內存在申請後,很快又會被釋放,由於這些內存的申請並不是為了創建對象,所以並沒有對象一級的內存池機制。這就意味著Python在運行期間會大量地執行malloc和free的操作,頻繁地在用戶態和核心態之間進行切換,這將嚴重影響Python的執行效率。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
內存池概念
內存池的概念就是預先在內存中申請一定數量的,大小相等的內存塊留作備用,當有新的內存需求時,就先從內存池中分配內存給這個需求,不夠了之後再申請新的內存。這樣做最顯著的優勢就是能夠減少內存碎片,提升效率。內存池的實現方式有很多,性能和適用范圍也不一樣。
特性
1.Python提供了對內存的垃圾收集機制,但是它將不用的內存放到內存池而不是返回給操作系統。
2.Pymalloc機制。為了加速Python的執行效率,Python引入了一個內存池機制,用於管理對小塊內存的申請和釋放。
3.Python中所有小於256個位元組的對象都使用pymalloc實現的分配器,而大的對象則使用系統的 malloc。
4.對於Python對象,如整數,浮點數和List,都有其獨立的私有內存池,對象間不共享他們的內存池。也就是說如果你分配又釋放了大量的整數,用於緩存這些整數的內存就不能再分配給浮點數。