① 學習如何大數據
大數據開發技術的學習對於現階段來說是非常重要的,企業對大數據開發技術的需求在逐漸增大,市場上相關大數據開發崗位在逐漸增多,在未來的發展過程中,大數據開發的發展空間會相對比較大,小夥伴對大數據開發技術的學習是一個不錯的選擇。
1.相關基礎知識的學習積累。小夥伴初學大數據開發技術主要以基礎知識為主,涉及到操作系統(linux)、資料庫、編程語言(java、python、Scala)、演算法設計基礎以及統計學基礎知識。這一過程雖然內容比較多,還好所學到知識都不是很難。對於零基礎小夥伴在這一階段的學習過程中,最好是能夠寫一些相關的小項目,同時通過大數據培訓班老師的指導,相信很快能夠達到入門的階段性學習。
2.大數據平台開發學習。接下來學習的內容主要以大數據平台為主,對於初學大數據開發技術的小夥伴來說最好選擇開源的大數據平台,比如Hadoop、Spark就是不錯的選擇,而且大數據培訓班都會有相關的案例為你提供一些學習資料,讓小夥伴更容易上手學習。
3.項目實戰案例的練習。小夥伴想要學好大數據開發技術知識,除了理論基礎知識的積累,還需要結合相關的項目實戰案例的練習來深入學習理解大數據開發技術知識,實踐的內容主要分為三個大的任務,分別是大數據應用開發、大數據分析和大數據運維,由於不同的崗位往往需要掌握不同的實踐能力,所以掌握更多的實踐知識能夠在一定程度上提升自己的崗位適應能力。
② 如何在Python中使用Gurobi
在Gurobi的安裝文件夾下找到...\win64\bin\pysetup.bat,然後雙擊,彈出命令窗口:
將python.exe所在的路徑拷貝過來,然後單擊Enter即可安裝完成。
在使用時,在程序頭部加上import gurobipy as gb即可。
③ 學大數據需要什麼基礎
其實籠統地說大數據原理和基礎都在數學這邊,當然有很多偏應用和軟體使用的技術,例如「深度學習調參」等,這些報個培訓速成班就能學會的技術含量不那麼高的東西,不在討論范圍內。
深度學習:目前非常火,打敗了非常多幾十年積累起來的經典方法。
增強學習:也很火,游戲AI、自動駕駛、機器人等等,它都是核心。
概率圖模型:深度學習之前非常popular的「學習」方法,有嚴格的數學模型和優美的演算法,雖然目前被前倆者蓋過了風頭,但是依然有它的立足之處。
再比如有用偏微分方程做圖像處理的(比較小眾),那麼這時候你肯定要去學一下偏微分方程了,大都是以科研為主導的。
④ MATKAB2018適合幾版的GUROBI
首先將tar.gz解壓到/opt下,將如下環境變數寫入~/.bashrc文件末尾gurobi引擎自帶的shell並不是特別常用,其python介面在gurobi編程中應用最廣泛
執行安裝路徑/opt/gurobi912/linux64中的setup.py文件安裝gurobi引擎的python介面
⑤ python數據分析的包 哪些
IPython
IPython 是一個在多種編程語言之間進行交互計算的命令行 shell,最開始是用 python 開發的,提供增強的內省,富媒體,擴展的 shell
語法,tab 補全,豐富的歷史等功能。IPython 提供了如下特性:
更強的交互 shell(基於 Qt 的終端)
一個基於瀏覽器的記事本,支持代碼,純文本,數學公式,內置圖表和其他富媒體
支持交互數據可視化和圖形界面工具
靈活,可嵌入解釋器載入到任意一個自有工程里
簡單易用,用於並行計算的高性能工具
由數據分析總監,Galvanize 專家 Nir Kaldero 提供。
GraphLab Greate 是一個 Python 庫,由 C++ 引擎支持,可以快速構建大型高性能數據產品。
這有一些關於 GraphLab Greate 的特點:
可以在您的計算機上以交互的速度分析以 T 為計量單位的數據量。
在單一平台上可以分析表格數據、曲線、文字、圖像。
最新的機器學習演算法包括深度學習,進化樹和 factorization machines 理論。
可以用 Hadoop Yarn 或者 EC2 聚類在你的筆記本或者分布系統上運行同樣的代碼。
藉助於靈活的 API 函數專注於任務或者機器學習。
在雲上用預測服務便捷地配置數據產品。
為探索和產品監測創建可視化的數據。
由 Galvanize 數據科學家 Benjamin Skrainka 提供。
Pandas
pandas 是一個開源的軟體,它具有 BSD 的開源許可,為 Python
編程語言提供高性能,易用數據結構和數據分析工具。在數據改動和數據預處理方面,Python 早已名聲顯赫,但是在數據分析與建模方面,Python
是個短板。Pands 軟體就填補了這個空白,能讓你用 Python 方便地進行你所有數據的處理,而不用轉而選擇更主流的專業語言,例如 R 語言。
整合了勁爆的 IPyton 工具包和其他的庫,它在 Python 中進行數據分析的開發環境在處理性能,速度,和兼容方面都性能卓越。Pands
不會執行重要的建模函數超出線性回歸和面板回歸;對於這些,參考 statsmodel 統計建模工具和 scikit-learn 庫。為了把 Python
打造成頂級的統計建模分析環境,我們需要進一步努力,但是我們已經奮斗在這條路上了。
由 Galvanize 專家,數據科學家 Nir Kaldero 提供。
PuLP
線性編程是一種優化,其中一個對象函數被最大程度地限制了。PuLP 是一個用 Python
編寫的線性編程模型。它能產生線性文件,能調用高度優化的求解器,GLPK,COIN CLP/CBC,CPLEX,和GUROBI,來求解這些線性問題。
由 Galvanize 數據科學家 Isaac Laughlin 提供
Matplotlib
matplotlib 是基於 Python 的
2D(數據)繪圖庫,它產生(輸出)出版級質量的圖表,用於各種列印紙質的原件格式和跨平台的互動式環境。matplotlib 既可以用在 python 腳本,
python 和 ipython 的 shell 界面 (ala MATLAB? 或 Mathematica?),web 應用伺服器,和6類 GUI
工具箱。
matplotlib 嘗試使容易事情變得更容易,使困難事情變為可能。你只需要少量幾行代碼,就可以生成圖表,直方圖,能量光譜(power
spectra),柱狀圖,errorcharts,散點圖(scatterplots)等,。
為簡化數據繪圖,pyplot 提供一個類 MATLAB 的介面界面,尤其是它與 IPython
共同使用時。對於高級用戶,你可以完全定製包括線型,字體屬性,坐標屬性等,藉助面向對象介面界面,或項 MATLAB 用戶提供類似(MATLAB)的界面。
Galvanize 公司的首席科學官 Mike Tamir 供稿。
Scikit-Learn
Scikit-Learn 是一個簡單有效地數據挖掘和數據分析工具(庫)。關於最值得一提的是,它人人可用,重復用於多種語境。它基於
NumPy,SciPy 和 mathplotlib 等構建。Scikit 採用開源的 BSD 授權協議,同時也可用於商業。Scikit-Learn
具備如下特性:
分類(Classification) – 識別鑒定一個對象屬於哪一類別
回歸(Regression) – 預測對象關聯的連續值屬性
聚類(Clustering) – 類似對象自動分組集合
降維(Dimensionality Rection) – 減少需要考慮的隨機變數數量
模型選擇(Model Selection) –比較、驗證和選擇參數和模型
預處理(Preprocessing) – 特徵提取和規范化
Galvanize 公司數據科學講師,Isaac Laughlin提供
Spark
Spark 由一個驅動程序構成,它運行用戶的 main 函數並在聚類上執行多個並行操作。Spark
最吸引人的地方在於它提供的彈性分布數據集(RDD),那是一個按照聚類的節點進行分區的元素的集合,它可以在並行計算中使用。RDDs 可以從一個 Hadoop
文件系統中的文件(或者其他的 Hadoop 支持的文件系統的文件)來創建,或者是驅動程序中其他的已經存在的標量數據集合,把它進行變換。用戶也許想要 Spark
在內存中永久保存 RDD,來通過並行操作有效地對 RDD 進行復用。最終,RDDs 無法從節點中自動復原。
Spark 中第二個吸引人的地方在並行操作中變數的共享。默認情況下,當 Spark
在並行情況下運行一個函數作為一組不同節點上的任務時,它把每一個函數中用到的變數拷貝一份送到每一任務。有時,一個變數需要被許多任務和驅動程序共享。Spark
支持兩種方式的共享變數:廣播變數,它可以用來在所有的節點上緩存數據。另一種方式是累加器,這是一種只能用作執行加法的變數,例如在計數器中和加法運算中。
⑥ python 「Bad operand type for abs 」
lara.circle("100")這里引號去掉試試
錯誤信息說的是abs內錯誤的字元串類型
⑦ 美國傳播學專業申請條件有哪些美國普渡大學商務分析碩士怎麼樣
一、美國出國留學傳播學專業申請資格——考試內容
語言考試:所學專業對托福考試要求很高,一般學校通常規定TOEFL在100多分,例如:西北大學(Northwestern)的報道專業與品牌整合營銷技術專業(IMC)規定學生的TOEFL總成績需在106之上;康奈爾大學(Cornell)則十分穩重地規定TOEFL一定要100多分;俄亥俄州立大學(OSU)和哥倫比亞大學(Columbia)則要求托福必必定要在110多分。
普渡大學商業分析研究生在項目QS排名的北美地域商業分析新項目排名中穩居第6位,美國USNEWS排名的美國商業分析工程中排名第9位。此項目將導致學生了解最先進信息科技和分析技術,這種技術性將導致公司的每個方面獲益。
學生將熟練掌握Python,Rstudio,Excel,SQL,SAS,Minitab,Gurobi和別的各種各樣雲計算技術,有機會將基礎知識運用到工作實踐問題中。普渡大學商業分析碩士專業以教學內容為主導,不用編寫論文,主要是通過理論結合實踐的形式來學生將多元化的工具軟體科學合理的應用到商業服務訓練中來。
⑧ 數據分析需要掌握哪些知識
1、基本知識掌握:javase+linux
學習大數據的基礎知識是java和linux,這兩項掌握後,再開始真正大數據技術的學習。
2、大數據處理技術掌握:HADOOP-hive-oozie-web-flume-python-hbase-kafka-scala-SPARK
以下這些都是必須要學習的課程
數據結構和演算法 (Python入門)
數據和統計基礎(R入門+統計學和微積分、線性代數惡補)
資料庫基礎(SQL入門)
統計學和計量經濟學(計量經濟學惡補)
最優化和決策模型(運籌學優化模型入門)
機器學習(決策樹、KNN等機器學習演算法入門)
網路科學(圖論入門和用Python搗鼓網路Gephi,Gurobi啥的入門)
商業分析(商業入門)
可視化(可視化工具(Tableau, Python)和視覺設計理論入門)
⑨ Python中math.sqrt不能有gurobi變數嗎
不能。
Python既支持面向過程的編程也支持面向對象的編程。在「面向過程」的語言中,程序是由過程或僅僅是可重用代碼的函數構建起來的。在「面向對象」的語言中,程序是由數據和功能組合而成的對象構建起來的。
其提供了豐富的API和工具,以便程序員能夠輕松地使用C語言、C++、Cython來編寫擴充模塊。Python編譯器本身也可以被集成到其它需要腳本語言的程序內。
⑩ 萬字教你如何用 Python 實現線性規劃
想像一下,您有一個線性方程組和不等式系統。這樣的系統通常有許多可能的解決方案。線性規劃是一組數學和計算工具,可讓您找到該系統的特定解,該解對應於某些其他線性函數的最大值或最小值。
混合整數線性規劃是 線性規劃 的擴展。它處理至少一個變數採用離散整數而不是連續值的問題。盡管乍一看混合整數問題與連續變數問題相似,但它們在靈活性和精度方面具有顯著優勢。
整數變數對於正確表示自然用整數表示的數量很重要,例如生產的飛機數量或服務的客戶數量。
一種特別重要的整數變數是 二進制變數 。它只能取 零 或 一 的值,在做出是或否的決定時很有用,例如是否應該建造工廠或者是否應該打開或關閉機器。您還可以使用它們來模擬邏輯約束。
線性規劃是一種基本的優化技術,已在科學和數學密集型領域使用了數十年。它精確、相對快速,適用於一系列實際應用。
混合整數線性規劃允許您克服線性規劃的許多限制。您可以使用分段線性函數近似非線性函數、使用半連續變數、模型邏輯約束等。它是一種計算密集型工具,但計算機硬體和軟體的進步使其每天都更加適用。
通常,當人們試圖制定和解決優化問題時,第一個問題是他們是否可以應用線性規劃或混合整數線性規劃。
以下文章說明了線性規劃和混合整數線性規劃的一些用例:
隨著計算機能力的增強、演算法的改進以及更多用戶友好的軟體解決方案的出現,線性規劃,尤其是混合整數線性規劃的重要性隨著時間的推移而增加。
解決線性規劃問題的基本方法稱為,它有多種變體。另一種流行的方法是。
混合整數線性規劃問題可以通過更復雜且計算量更大的方法來解決,例如,它在幕後使用線性規劃。這種方法的一些變體是,它涉及使用 切割平面 ,以及。
有幾種適用於線性規劃和混合整數線性規劃的合適且眾所周知的 Python 工具。其中一些是開源的,而另一些是專有的。您是否需要免費或付費工具取決於問題的規模和復雜性,以及對速度和靈活性的需求。
值得一提的是,幾乎所有廣泛使用的線性規劃和混合整數線性規劃庫都是以 Fortran 或 C 或 C++ 原生和編寫的。這是因為線性規劃需要對(通常很大)矩陣進行計算密集型工作。此類庫稱為求解器。Python 工具只是求解器的包裝器。
Python 適合圍繞本機庫構建包裝器,因為它可以很好地與 C/C++ 配合使用。對於本教程,您不需要任何 C/C++(或 Fortran),但如果您想了解有關此酷功能的更多信息,請查看以下資源:
基本上,當您定義和求解模型時,您使用 Python 函數或方法調用低級庫,該庫執行實際優化工作並將解決方案返回給您的 Python 對象。
幾個免費的 Python 庫專門用於與線性或混合整數線性規劃求解器交互:
在本教程中,您將使用SciPy和PuLP來定義和解決線性規劃問題。
在本節中,您將看到線性規劃問題的兩個示例:
您將在下一節中使用 Python 來解決這兩個問題。
考慮以下線性規劃問題:
你需要找到X和Ÿ使得紅色,藍色和黃色的不平等,以及不平等X 0和ÿ 0,是滿意的。同時,您的解決方案必須對應於z的最大可能值。
您需要找到的自變數(在本例中為 x 和 y )稱為 決策變數 。要最大化或最小化的決策變數的函數(在本例中為 z) 稱為 目標函數 、 成本函數 或僅稱為 目標 。您需要滿足的 不等式 稱為 不等式約束 。您還可以在稱為 等式約束 的約束中使用方程。
這是您如何可視化問題的方法:
紅線代表的功能2 X + Ý = 20,和它上面的紅色區域示出了紅色不等式不滿足。同樣,藍線是函數 4 x + 5 y = 10,藍色區域被禁止,因為它違反了藍色不等式。黃線是 x + 2 y = 2,其下方的黃色區域是黃色不等式無效的地方。
如果您忽略紅色、藍色和黃色區域,則僅保留灰色區域。灰色區域的每個點都滿足所有約束,是問題的潛在解決方案。該區域稱為 可行域 ,其點為 可行解 。在這種情況下,有無數可行的解決方案。
您想最大化z。對應於最大z的可行解是 最優解 。如果您嘗試最小化目標函數,那麼最佳解決方案將對應於其可行的最小值。
請注意,z是線性的。你可以把它想像成一個三維空間中的平面。這就是為什麼最優解必須在可行區域的 頂點 或角上的原因。在這種情況下,最佳解決方案是紅線和藍線相交的點,稍後您將看到。
有時,可行區域的整個邊緣,甚至整個區域,都可以對應相同的z值。在這種情況下,您有許多最佳解決方案。
您現在已准備好使用綠色顯示的附加等式約束來擴展問題:
方程式 x + 5 y = 15,以綠色書寫,是新的。這是一個等式約束。您可以通過向上一張圖像添加相應的綠線來將其可視化:
現在的解決方案必須滿足綠色等式,因此可行區域不再是整個灰色區域。它是綠線從與藍線的交點到與紅線的交點穿過灰色區域的部分。後一點是解決方案。
如果插入x的所有值都必須是整數的要求,那麼就會得到一個混合整數線性規劃問題,可行解的集合又會發生變化:
您不再有綠線,只有沿線的x值為整數的點。可行解是灰色背景上的綠點,此時最優解離紅線最近。
這三個例子說明了 可行的線性規劃問題 ,因為它們具有有界可行區域和有限解。
如果沒有解,線性規劃問題是 不可行的 。當沒有解決方案可以同時滿足所有約束時,通常會發生這種情況。
例如,考慮如果添加約束x + y 1會發生什麼。那麼至少有一個決策變數(x或y)必須是負數。這與給定的約束x 0 和y 0相沖突。這樣的系統沒有可行的解決方案,因此稱為不可行的。
另一個示例是添加與綠線平行的第二個等式約束。這兩行沒有共同點,因此不會有滿足這兩個約束的解決方案。
一個線性規劃問題是 無界的 ,如果它的可行區域是無界,將溶液不是有限。這意味著您的變數中至少有一個不受約束,可以達到正無窮大或負無窮大,從而使目標也無限大。
例如,假設您採用上面的初始問題並刪除紅色和黃色約束。從問題中刪除約束稱為 放鬆 問題。在這種情況下,x和y不會在正側有界。您可以將它們增加到正無窮大,從而產生無限大的z值。
在前面的部分中,您研究了一個與任何實際應用程序無關的抽象線性規劃問題。在本小節中,您將找到與製造業資源分配相關的更具體和實用的優化問題。
假設一家工廠生產四種不同的產品,第一種產品的日產量為x ₁,第二種產品的產量為x 2,依此類推。目標是確定每種產品的利潤最大化日產量,同時牢記以下條件:
數學模型可以這樣定義:
目標函數(利潤)在條件 1 中定義。人力約束遵循條件 2。對原材料 A 和 B 的約束可以從條件 3 和條件 4 中通過對每種產品的原材料需求求和得出。
最後,產品數量不能為負,因此所有決策變數必須大於或等於零。
與前面的示例不同,您無法方便地將其可視化,因為它有四個決策變數。但是,無論問題的維度如何,原理都是相同的。
在本教程中,您將使用兩個Python 包來解決上述線性規劃問題:
SciPy 設置起來很簡單。安裝後,您將擁有開始所需的一切。它的子包 scipy.optimize 可用於線性和非線性優化。
PuLP 允許您選擇求解器並以更自然的方式表述問題。PuLP 使用的默認求解器是COIN-OR Branch and Cut Solver (CBC)。它連接到用於線性鬆弛的COIN-OR 線性規劃求解器 (CLP)和用於切割生成的COIN-OR 切割生成器庫 (CGL)。
另一個偉大的開源求解器是GNU 線性規劃工具包 (GLPK)。一些著名且非常強大的商業和專有解決方案是Gurobi、CPLEX和XPRESS。
除了在定義問題時提供靈活性和運行各種求解器的能力外,PuLP 使用起來不如 Pyomo 或 CVXOPT 等替代方案復雜,後者需要更多的時間和精力來掌握。
要學習本教程,您需要安裝 SciPy 和 PuLP。下面的示例使用 SciPy 1.4.1 版和 PuLP 2.1 版。
您可以使用pip以下方法安裝兩者:
您可能需要運行pulptest或sudo pulptest啟用 PuLP 的默認求解器,尤其是在您使用 Linux 或 Mac 時:
或者,您可以下載、安裝和使用 GLPK。它是免費和開源的,適用於 Windows、MacOS 和 Linux。在本教程的後面部分,您將看到如何將 GLPK(除了 CBC)與 PuLP 一起使用。
在 Windows 上,您可以下載檔案並運行安裝文件。
在 MacOS 上,您可以使用 Homebrew:
在 Debian 和 Ubuntu 上,使用apt來安裝glpk和glpk-utils:
在Fedora,使用dnf具有glpk-utils:
您可能還會發現conda對安裝 GLPK 很有用:
安裝完成後,可以查看GLPK的版本:
有關詳細信息,請參閱 GLPK 關於使用Windows 可執行文件和Linux 軟體包進行安裝的教程。
在本節中,您將學習如何使用 SciPy優化和求根庫進行線性規劃。
要使用 SciPy 定義和解決優化問題,您需要導入scipy.optimize.linprog():
現在您已經linprog()導入,您可以開始優化。
讓我們首先解決上面的線性規劃問題:
linprog()僅解決最小化(而非最大化)問題,並且不允許具有大於或等於符號 ( ) 的不等式約束。要解決這些問題,您需要在開始優化之前修改您的問題:
引入這些更改後,您將獲得一個新系統:
該系統與原始系統等效,並且將具有相同的解決方案。應用這些更改的唯一原因是克服 SciPy 與問題表述相關的局限性。
下一步是定義輸入值:
您將上述系統中的值放入適當的列表、元組或NumPy 數組中:
注意:請注意行和列的順序!
約束左側和右側的行順序必須相同。每一行代表一個約束。
來自目標函數和約束左側的系數的順序必須匹配。每列對應一個決策變數。
下一步是以與系數相同的順序定義每個變數的界限。在這種情況下,它們都在零和正無窮大之間:
此語句是多餘的,因為linprog()默認情況下採用這些邊界(零到正無窮大)。
註:相反的float("inf"),你可以使用math.inf,numpy.inf或scipy.inf。
最後,是時候優化和解決您感興趣的問題了。你可以這樣做linprog():
參數c是指來自目標函數的系數。A_ub和b_ub分別與不等式約束左邊和右邊的系數有關。同樣,A_eq並b_eq參考等式約束。您可以使用bounds提供決策變數的下限和上限。
您可以使用該參數method來定義要使用的線性規劃方法。有以下三種選擇:
linprog() 返回具有以下屬性的數據結構:
您可以分別訪問這些值:
這就是您獲得優化結果的方式。您還可以以圖形方式顯示它們:
如前所述,線性規劃問題的最優解位於可行區域的頂點。在這種情況下,可行區域只是藍線和紅線之間的綠線部分。最優解是代表綠線和紅線交點的綠色方塊。
如果要排除相等(綠色)約束,只需刪除參數A_eq並b_eq從linprog()調用中刪除:
解決方案與前一種情況不同。你可以在圖表上看到:
在這個例子中,最優解是紅色和藍色約束相交的可行(灰色)區域的紫色頂點。其他頂點,如黃色頂點,具有更高的目標函數值。
您可以使用 SciPy 來解決前面部分所述的資源分配問題:
和前面的例子一樣,你需要從上面的問題中提取必要的向量和矩陣,將它們作為參數傳遞給.linprog(),然後得到結果:
結果告訴您最大利潤是1900並且對應於x ₁ = 5 和x ₃ = 45。在給定條件下生產第二和第四個產品是沒有利潤的。您可以在這里得出幾個有趣的結論:
opt.statusis0和opt.successis True,說明優化問題成功求解,最優可行解。
SciPy 的線性規劃功能主要用於較小的問題。對於更大和更復雜的問題,您可能會發現其他庫更適合,原因如下:
幸運的是,Python 生態系統為線性編程提供了幾種替代解決方案,這些解決方案對於更大的問題非常有用。其中之一是 PuLP,您將在下一節中看到它的實際應用。
PuLP 具有比 SciPy 更方便的線性編程 API。您不必在數學上修改您的問題或使用向量和矩陣。一切都更干凈,更不容易出錯。
像往常一樣,您首先導入您需要的內容:
現在您已經導入了 PuLP,您可以解決您的問題。
您現在將使用 PuLP 解決此系統:
第一步是初始化一個實例LpProblem來表示你的模型:
您可以使用該sense參數來選擇是執行最小化(LpMinimize或1,這是默認值)還是最大化(LpMaximize或-1)。這個選擇會影響你的問題的結果。
一旦有了模型,就可以將決策變數定義為LpVariable類的實例:
您需要提供下限,lowBound=0因為默認值為負無窮大。該參數upBound定義了上限,但您可以在此處省略它,因為它默認為正無窮大。
可選參數cat定義決策變數的類別。如果您使用的是連續變數,則可以使用默認值"Continuous"。
您可以使用變數x和y創建表示線性表達式和約束的其他 PuLP 對象:
當您將決策變數與標量相乘或構建多個決策變數的線性組合時,您會得到一個pulp.LpAffineExpression代表線性表達式的實例。
注意:您可以增加或減少變數或表達式,你可以乘他們常數,因為紙漿類實現一些Python的特殊方法,即模擬數字類型一樣__add__(),__sub__()和__mul__()。這些方法用於像定製運營商的行為+,-和*。
類似地,您可以將線性表達式、變數和標量與運算符 ==、=以獲取表示模型線性約束的紙漿.LpConstraint實例。
註:也有可能與豐富的比較方法來構建的約束.__eq__(),.__le__()以及.__ge__()定義了運營商的行為==,=。
考慮到這一點,下一步是創建約束和目標函數並將它們分配給您的模型。您不需要創建列表或矩陣。只需編寫 Python 表達式並使用+=運算符將它們附加到模型中:
在上面的代碼中,您定義了包含約束及其名稱的元組。LpProblem允許您通過將約束指定為元組來向模型添加約束。第一個元素是一個LpConstraint實例。第二個元素是該約束的可讀名稱。
設置目標函數非常相似:
或者,您可以使用更短的符號:
現在您已經添加了目標函數並定義了模型。
注意:您可以使用運算符將 約束或目標附加到模型中,+=因為它的類LpProblem實現了特殊方法.__iadd__(),該方法用於指定 的行為+=。
對於較大的問題,lpSum()與列表或其他序列一起使用通常比重復+運算符更方便。例如,您可以使用以下語句將目標函數添加到模型中:
它產生與前一條語句相同的結果。
您現在可以看到此模型的完整定義:
模型的字元串表示包含所有相關數據:變數、約束、目標及其名稱。
注意:字元串表示是通過定義特殊方法構建的.__repr__()。有關 的更多詳細信息.__repr__(),請查看Pythonic OOP 字元串轉換:__repr__vs__str__ .
最後,您已准備好解決問題。你可以通過調用.solve()你的模型對象來做到這一點。如果要使用默認求解器 (CBC),則不需要傳遞任何參數:
.solve()調用底層求解器,修改model對象,並返回解決方案的整數狀態,1如果找到了最優解。有關其餘狀態代碼,請參閱LpStatus[]。
你可以得到優化結果作為 的屬性model。該函數value()和相應的方法.value()返回屬性的實際值:
model.objective持有目標函數model.constraints的值,包含鬆弛變數的值,以及對象x和y具有決策變數的最優值。model.variables()返回一個包含決策變數的列表:
如您所見,此列表包含使用 的構造函數創建的確切對象LpVariable。
結果與您使用 SciPy 獲得的結果大致相同。
注意:注意這個方法.solve()——它會改變對象的狀態,x並且y!
您可以通過調用查看使用了哪個求解器.solver:
輸出通知您求解器是 CBC。您沒有指定求解器,因此 PuLP 調用了默認求解器。
如果要運行不同的求解器,則可以將其指定為 的參數.solve()。例如,如果您想使用 GLPK 並且已經安裝了它,那麼您可以solver=GLPK(msg=False)在最後一行使用。請記住,您還需要導入它:
現在你已經導入了 GLPK,你可以在裡面使用它.solve():
該msg參數用於顯示來自求解器的信息。msg=False禁用顯示此信息。如果要包含信息,則只需省略msg或設置msg=True。
您的模型已定義並求解,因此您可以按照與前一種情況相同的方式檢查結果:
使用 GLPK 得到的結果與使用 SciPy 和 CBC 得到的結果幾乎相同。
一起來看看這次用的是哪個求解器:
正如您在上面用突出顯示的語句定義的那樣model.solve(solver=GLPK(msg=False)),求解器是 GLPK。
您還可以使用 PuLP 來解決混合整數線性規劃問題。要定義整數或二進制變數,只需傳遞cat="Integer"或cat="Binary"到LpVariable。其他一切都保持不變:
在本例中,您有一個整數變數並獲得與之前不同的結果:
Nowx是一個整數,如模型中所指定。(從技術上講,它保存一個小數點後為零的浮點值。)這一事實改變了整個解決方案。讓我們在圖表上展示這一點:
如您所見,最佳解決方案是灰色背景上最右邊的綠點。這是兩者的最大價值的可行的解決方案x和y,給它的最大目標函數值。
GLPK 也能夠解決此類問題。
現在你可以使用 PuLP 來解決上面的資源分配問題:
定義和解決問題的方法與前面的示例相同:
在這種情況下,您使用字典 x來存儲所有決策變數。這種方法很方便,因為字典可以將決策變數的名稱或索引存儲為鍵,將相應的LpVariable對象存儲為值。列表或元組的LpVariable實例可以是有用的。
上面的代碼產生以下結果:
如您所見,該解決方案與使用 SciPy 獲得的解決方案一致。最有利可圖的解決方案是每天生產5.0第一件產品和45.0第三件產品。
讓我們把這個問題變得更復雜和有趣。假設由於機器問題,工廠無法同時生產第一種和第三種產品。在這種情況下,最有利可圖的解決方案是什麼?
現在您有另一個邏輯約束:如果x ₁ 為正數,則x ₃ 必須為零,反之亦然。這是二元決策變數非常有用的地方。您將使用兩個二元決策變數y ₁ 和y ₃,它們將表示是否生成了第一個或第三個產品:
除了突出顯示的行之外,代碼與前面的示例非常相似。以下是差異:
這是解決方案:
事實證明,最佳方法是排除第一種產品而只生產第三種產品。
就像有許多資源可以幫助您學習線性規劃和混合整數線性規劃一樣,還有許多具有 Python 包裝器的求解器可用。這是部分列表:
其中一些庫,如 Gurobi,包括他們自己的 Python 包裝器。其他人使用外部包裝器。例如,您看到可以使用 PuLP 訪問 CBC 和 GLPK。
您現在知道什麼是線性規劃以及如何使用 Python 解決線性規劃問題。您還了解到 Python 線性編程庫只是本機求解器的包裝器。當求解器完成其工作時,包裝器返回解決方案狀態、決策變數值、鬆弛變數、目標函數等。