Ⅰ 如何學習python爬蟲
爬蟲是入門Python最好的方式,沒有之一。 Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而
言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的
使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有的人則認為先要掌握網頁的知識,遂 開始 HTMLCSS,結果入了前端的坑 ,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從 一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。 那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。 這里給你一
條平滑的、零基礎快速入門的學習路徑。
python學習網,免費的python學習網站,歡迎在線學習!
學習 Python 包並實現基本的爬蟲過程
大部分爬蟲都是按 「發送請求——獲得頁面——解析頁面——抽取並儲存內容」 這樣的流程來進行,這其實也是模擬了我們使用瀏覽器
獲取網頁信息的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等, 建議從requests+Xpath 開始 ,requests 負責連接網
站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多, 一
般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了 。
掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如 訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等 。
往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。
學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy
框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人
驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
學習資料庫基礎,應對大規模數據存儲
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前
比較主流的 MongoDB 就OK。
MongoDB 可以方便你去存儲一些非結構化的數據 ,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在
Python中操作MongoDB。
因為這里要用到的資料庫知識其實非常簡單,主要是 數據如何入庫、如何進行提取 ,在需要的時候再學習就行。
分布式爬蟲,實現大規模並發採集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字: 分布
式爬蟲 。
分布式這個東西,聽起來很恐怖, 但其實就是利用多線程的原理讓多個爬蟲同時工作 ,需要你掌握 Scrapy + MongoDB + Redis 這三種工具 。
Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務
隊列。
所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架
構了,實現一些更加自動化的數據獲取。
你看,這一條學習路徑下來,你已然可以成為老司機了,非常的順暢。所以在一開始的時候,盡量不要系統地去啃一些東西,找一個實際
的項目(開始可以從豆瓣、小豬這種簡單的入手),直接開始就好 。
Ⅱ Python爬蟲是什麼
為自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁。
網路爬蟲為一個自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁,是搜索引擎的重要組成。傳統爬蟲從一個或若干初始網頁的URL開始,獲得初始網頁上的URL,在抓取網頁的過程中,不斷從當前頁面上抽取新的URL放入隊列,直到滿足系統的一定停止條件。
將根據一定的搜索策略從隊列中選擇下一步要抓取的網頁URL,並重復上述過程,直到達到系統的某一條件時停止。另外,所有被爬蟲抓取的網頁將會被系統存貯,進行一定的分析、過濾,並建立索引,以便之後的查詢和檢索。
(2)python爬蟲02request擴展閱讀:
網路爬蟲的相關要求規定:
1、由Python標准庫提供了系統管理、網路通信、文本處理、資料庫介面、圖形系統、XML處理等額外的功能。
2、按照網頁內容目錄層次深淺來爬行頁面,處於較淺目錄層次的頁面首先被爬行。 當同一層次中的頁面爬行完畢後,爬蟲再深入下一層繼續爬行。
3、文本處理,包含文本格式化、正則表達式匹配、文本差異計算與合並、Unicode支持,二進制數據處理等功能。
Ⅲ Python爬蟲筆記(二)requests模塊get,post,代理
import requests
base_url = 'https://www..com'
response = requests.get(base_url)
url=請求url,
headers =請求頭字典,
params = 請求參數字典。
timeout = 超時時長,
)---->response對象
伺服器響應包含:狀態行(協議,狀態碼)、響應頭,空行,響應正文
字元串格式:response.text
bytes類型:response.content
response.headers['cookie']
response.text獲取到的字元串類型的響應正文,
其實是通過下面的步驟獲取的:
response.text = response.content.decode(response.encoding)
產生的原因:編碼和解碼的編碼格式不一致造成的。
str.encode('編碼')---將字元串按指定編碼解碼成bytes類型
bytes.decode('編碼')---將bytes類型按指定編碼編碼成字元串。
a、response.content.decode('頁面正確的編碼格式')
<meta http-equiv="content-type" content="text/html;charset=utf-8">
b、找到正確的編碼,設置到response.encoding中
response.encoding = 正確的編碼
response.text--->正確的頁面內容。
a、沒有請求參數的情況下,只需要確定url和headers字典。
b、get請求是有請求參數。
在chrome瀏覽器中,下面找query_string_params,
將裡面的參數封裝到params字典中。
c、分頁主要是查看每頁中,請求參數頁碼欄位的變化,
找到變化規律,用for循環就可以做到分頁。
requests.post(
url=請求url,
headers = 請求頭字典,
data=請求數據字典
timeout=超時時長
)---response對象
post請求一般返回數據都是json數據。
(1)response.json()--->json字元串所對應的python的list或者dict
(2)用 json 模塊。
json.loads(json_str)---->json_data(python的list或者dict)
json.mps(json_data)--->json_str
post請求能否成功,關鍵看**請求參數**。
如何查找是哪個請求參數在影響數據獲取?
--->通過對比,找到變化的參數。
變化參數如何找到參數的生成方式,就是解決這個ajax請求數據獲取的途徑。
**尋找的辦法**有以下幾種:
(1)寫死在頁面。
(2)寫在js中。
(3)請求參數是在之前的一條ajax請求的數據裡面提前獲取好的。
代理形象的說,他是網路信息中轉站。
實際上就是在本機和伺服器之間架了一座橋。
a、突破自身ip訪問現實,可以訪問一些平時訪問不到網站。
b、訪問一些單位或者團體的資源。
c、提高訪問速度。代理的伺服器主要作用就是中轉,
所以一般代理服務裡面都是用內存來進行數據存儲的。
d、隱藏ip。
FTP代理伺服器---21,2121
HTTP代理伺服器---80,8080
SSL/TLS代理:主要用訪問加密網站。埠:443
telnet代理 :主要用telnet遠程式控制制,埠一般為23
高度匿名代理:數據包會原封不動轉化,在服務段看來,就好像一個普通用戶在訪問,做到完全隱藏ip。
普通匿名代理:數據包會做一些改動,伺服器有可能找到原ip。
透明代理:不但改動數據,還會告訴服務,是誰訪問的。
間諜代理:指組織或者個人用於記錄用戶傳輸數據,然後進行研究,監控等目的的代理。
proxies = {
'代理伺服器的類型':'代理ip'
}
response = requests.get(proxies = proxies)
代理伺服器的類型:http,https,ftp
代理ip:http://ip:port
Ⅳ python request怎麼抓取網頁數據
我們經常會發現網頁中的許多數據並不是寫死在HTML中的,而是通過js動態載入的。所以也就引出了什麼是動態數據的概念, 動態數據在這里指的是網頁中由Javascript動態生成的頁面內容,是在頁面載入到瀏覽器後動態生成的,而之前並沒有的。
在編寫爬蟲進行網頁數據抓取的時候,經常會遇到這種需要動態載入數據的HTML網頁,如果還是直接從網頁上抓取那麼將無法獲得任何數據。
今天,我們就在這里簡單聊一聊如何用python來抓取頁面中的JS動態載入的數據。
給出一個網頁:豆瓣電影排行榜,其中的所有電影信息都是動態載入的。我們無法直接從頁面中獲得每個電影的信息。
如下圖所示,我們無法在HTML中找到對應的電影信息。
Ⅳ Python的request爬蟲填寫post請求能幹什麼,用什麼作用
最典型的,提交表單模擬登陸,get只是單純的通過URL構造請求,POST可以攜帶更多的元素
Ⅵ python 爬蟲裡面什麼叫request
request對象是從客戶端向伺服器發出請求,包括用戶提交的信息以及客戶端的一些信息。客戶端可通過HTML表單或在網頁地址後面提供參數的方法提交
數據,然後通過request對象的相關方法來獲取這些數據。request的各種方法主要用來處理客戶端瀏覽器提交的請求中的各項參數和選項。
而python爬蟲中的request其實就是通過python向伺服器發出request請求,得到其返回的信息
Ⅶ 全方面的掌握Requests庫的使用【python爬蟲入門進階】(02)
上一篇文章簡單的介紹了 爬蟲相關的基礎知識點,介紹了一個標准爬蟲程序的三個步驟 。這篇文章就讓我們接著來學習。
本文重點介紹requests庫的使用以及爬蟲協議。之前也寫了一篇 Requests庫使用的博客 ,有興趣的小夥伴可以去看看。
前面介紹了Requests庫是用來抓取網頁源碼,請求介面的利器,整體上是要比urllib庫的request更加好用的庫。官網上將其稱之為唯一一個非轉基因的Python HTTP庫,人類可以安全享用。
Requests庫有7個主要方法。
不過我們平常最常用的方法還是GET方法和POST方法。
get請求方法是爬蟲中最常用到的方法,因為爬蟲主要就是爬取網頁的信息。最基礎的使用是
這里需要通過 res.encoding='utf-8' 設置響應結果的編碼格式是utf-8。不然可能會出現中文亂碼
如果響應結果是二進制數據的話則需要通過 res.content 方法來提取響應結果。
設置編碼的方式也可以是 res.content.decode('utf-8') 。
即
有時候get請求也需要傳入參數,這里可以直接將參數拼接到URL上或者通過params參數傳入一個字典。
運行結果是:
get請求只能傳入簡單的參數,如果參數比較復雜或者傳入的參數比較多的話則GET請求就不再適用了,這時候就需要適用post請求方法了。
Post請求的請求類型有三種:
以表單的方式提交數據是POST請求的默認的請求格式,只需要將參數放在一個字典中進行傳入即可。
這里將請求頭的數據放在一個名為header的字典中,然後在請求時通過headers參數傳入。在請求中設置了內容類型是 application/json ,編碼格式是 charset=utf-8
傳入的是一個json字元串,通過data參數進行傳入。json字元串可以直接寫也可以通過 json.mps(dict) 方法將一個字典序列化,就像下面這樣。
文件上傳與本節爬蟲的內容無關,在此就不過多介紹了。有興趣的小夥伴可以看看 Python中如何編寫介面,以及如何請求外部介面 這篇文章。
在網路請求中,我們常常會遇到狀態碼是3開頭的重定向問題,在Requests中是默認開啟允許重定向的,即遇到重定向時,會自動繼續訪問。通過將allow_redirects 屬性設置為False不允許重定向。
通過timeout屬性可以設置超時時間,單位是秒。get方法和post方法均可設置。
通過status_code屬性可以獲取介面的響應碼。
有時候我們使用了抓包工具,這時候由於抓包證書提供的證書並不是受信任的數字證書頒發機構頒發的,所以證書的驗證會失敗,所以我們就需要關閉證書驗證。在請求的時候把verify參數設置為False就可以關閉證書驗證了。
爬蟲協議也叫做robots協議,告訴網路蜘蛛哪些頁面可以爬取,哪些頁面不能爬取
爬蟲文件的規范是:
允許所有的機器人
本文詳細介紹了Request庫的使用
Ⅷ 如何用python寫出爬蟲
先檢查是否有API
API是網站官方提供的數據介面,如果通過調用API採集數據,則相當於在網站允許的范圍內採集,這樣既不會有道德法律風險,也沒有網站故意設置的障礙;不過調用API介面的訪問則處於網站的控制中,網站可以用來收費,可以用來限制訪問上限等。整體來看,如果數據採集的需求並不是很獨特,那麼有API則應優先採用調用API的方式。
數據結構分析和數據存儲
爬蟲需求要十分清晰,具體表現為需要哪些欄位,這些欄位可以是網頁上現有的,也可以是根據網頁上現有的欄位進一步計算的,這些欄位如何構建表,多張表如何連接等。值得一提的是,確定欄位環節,不要只看少量的網頁,因為單個網頁可以缺少別的同類網頁的欄位,這既有可能是由於網站的問題,也可能是用戶行為的差異,只有多觀察一些網頁才能綜合抽象出具有普適性的關鍵欄位——這並不是幾分鍾看幾個網頁就可以決定的簡單事情,如果遇上了那種臃腫、混亂的網站,可能坑非常多。
對於大規模爬蟲,除了本身要採集的數據外,其他重要的中間數據(比如頁面Id或者url)也建議存儲下來,這樣可以不必每次重新爬取id。
資料庫並沒有固定的選擇,本質仍是將Python里的數據寫到庫里,可以選擇關系型資料庫MySQL等,也可以選擇非關系型資料庫MongoDB等;對於普通的結構化數據一般存在關系型資料庫即可。sqlalchemy是一個成熟好用的資料庫連接框架,其引擎可與Pandas配套使用,把數據處理和數據存儲連接起來,一氣呵成。
數據流分析
對於要批量爬取的網頁,往上一層,看它的入口在哪裡;這個是根據採集范圍來確定入口,比如若只想爬一個地區的數據,那從該地區的主頁切入即可;但若想爬全國數據,則應更往上一層,從全國的入口切入。一般的網站網頁都以樹狀結構為主,找到切入點作為根節點一層層往裡進入即可。
值得注意的一點是,一般網站都不會直接把全量的數據做成列表給你一頁頁往下翻直到遍歷完數據,比如鏈家上面很清楚地寫著有24587套二手房,但是它只給100頁,每頁30個,如果直接這么切入只能訪問3000個,遠遠低於真實數據量;因此先切片,再整合的數據思維可以獲得更大的數據量。顯然100頁是系統設定,只要超過300個就只顯示100頁,因此可以通過其他的篩選條件不斷細分,只到篩選結果小於等於300頁就表示該條件下沒有缺漏;最後把各種條件下的篩選結果集合在一起,就能夠盡可能地還原真實數據量。
明確了大規模爬蟲的數據流動機制,下一步就是針對單個網頁進行解析,然後把這個模式復制到整體。對於單個網頁,採用抓包工具可以查看它的請求方式,是get還是post,有沒有提交表單,欲採集的數據是寫入源代碼里還是通過AJAX調用JSON數據。
同樣的道理,不能只看一個頁面,要觀察多個頁面,因為批量爬蟲要弄清這些大量頁面url以及參數的規律,以便可以自動構造;有的網站的url以及關鍵參數是加密的,這樣就悲劇了,不能靠著明顯的邏輯直接構造,這種情況下要批量爬蟲,要麼找到它加密的js代碼,在爬蟲代碼上加入從明文到密碼的加密過程;要麼採用下文所述的模擬瀏覽器的方式。
數據採集
之前用R做爬蟲,不要笑,R的確可以做爬蟲工作;但在爬蟲方面,Python顯然優勢更明顯,受眾更廣,這得益於其成熟的爬蟲框架,以及其他的在計算機系統上更好的性能。scrapy是一個成熟的爬蟲框架,直接往裡套用就好,比較適合新手學習;requests是一個比原生的urllib包更簡潔強大的包,適合作定製化的爬蟲功能。requests主要提供一個基本訪問功能,把網頁的源代碼給download下來。一般而言,只要加上跟瀏覽器同樣的Requests Headers參數,就可以正常訪問,status_code為200,並成功得到網頁源代碼;但是也有某些反爬蟲較為嚴格的網站,這么直接訪問會被禁止;或者說status為200也不會返回正常的網頁源碼,而是要求寫驗證碼的js腳本等。
下載到了源碼之後,如果數據就在源碼中,這種情況是最簡單的,這就表示已經成功獲取到了數據,剩下的無非就是數據提取、清洗、入庫。但若網頁上有,然而源代碼里沒有的,就表示數據寫在其他地方,一般而言是通過AJAX非同步載入JSON數據,從XHR中找即可找到;如果這樣還找不到,那就需要去解析js腳本了。
解析工具
源碼下載後,就是解析數據了,常用的有兩種方法,一種是用BeautifulSoup對樹狀HTML進行解析,另一種是通過正則表達式從文本中抽取數據。
BeautifulSoup比較簡單,支持Xpath和CSSSelector兩種途徑,而且像Chrome這類瀏覽器一般都已經把各個結點的Xpath或者CSSSelector標記好了,直接復制即可。以CSSSelector為例,可以選擇tag、id、class等多種方式進行定位選擇,如果有id建議選id,因為根據HTML語法,一個id只能綁定一個標簽。
正則表達式很強大,但構造起來有點復雜,需要專門去學習。因為下載下來的源碼格式就是字元串,所以正則表達式可以大顯身手,而且處理速度很快。
對於HTML結構固定,即同樣的欄位處tag、id和class名稱都相同,採用BeautifulSoup解析是一種簡單高效的方案,但有的網站混亂,同樣的數據在不同頁面間HTML結構不同,這種情況下BeautifulSoup就不太好使;如果數據本身格式固定,則用正則表達式更方便。比如以下的例子,這兩個都是深圳地區某個地方的經度,但一個頁面的class是long,一個頁面的class是longitude,根據class來選擇就沒辦法同時滿足2個,但只要注意到深圳地區的經度都是介於113到114之間的浮點數,就可以通過正則表達式"11[3-4].\d+"來使兩個都滿足。
數據整理
一般而言,爬下來的原始數據都不是清潔的,所以在入庫前要先整理;由於大部分都是字元串,所以主要也就是字元串的處理方式了。
字元串自帶的方法可以滿足大部分簡單的處理需求,比如strip可以去掉首尾不需要的字元或者換行符等,replace可以將指定部分替換成需要的部分,split可以在指定部分分割然後截取一部分。
如果字元串處理的需求太復雜以致常規的字元串處理方法不好解決,那就要請出正則表達式這個大殺器。
Pandas是Python中常用的數據處理模塊,雖然作為一個從R轉過來的人一直覺得這個模仿R的包實在是太難用了。Pandas不僅可以進行向量化處理、篩選、分組、計算,還能夠整合成DataFrame,將採集的數據整合成一張表,呈現最終的存儲效果。
寫入資料庫
如果只是中小規模的爬蟲,可以把最後的爬蟲結果匯合成一張表,最後導出成一張表格以便後續使用;但對於表數量多、單張表容量大的大規模爬蟲,再導出成一堆零散的表就不合適了,肯定還是要放在資料庫中,既方便存儲,也方便進一步整理。
寫入資料庫有兩種方法,一種是通過Pandas的DataFrame自帶的to_sql方法,好處是自動建表,對於對表結構沒有嚴格要求的情況下可以採用這種方式,不過值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否則報錯,雖然這個認為不太合理;另一種是利用資料庫引擎來執行SQL語句,這種情況下要先自己建表,雖然多了一步,但是表結構完全是自己控制之下。Pandas與SQL都可以用來建表、整理數據,結合起來使用效率更高。
Ⅸ 如何入門 Python 爬蟲
入門的話,我的經歷:
1.先用python寫一個爬取網頁源代碼的爬蟲(最先是爬取個人博客,會遇到亂碼問題當時困擾了很久)
2.後來寫了爬取網路圖片的程序,自動下載小說(我愛看小說-_-)(接觸正則表達式)
3.然後網路圖片他那種分頁模式,一般一頁只有20張左右的圖片,分析源代碼,完善爬取程序,不受到限制,一次可以下幾千張(圖片有的是原圖,有的是縮略圖)
4.後來發現程序卡頓,就添加了多線程。
5.然後模擬登陸一些不用驗證碼的網頁(我學校的oj),cookie登陸B站(本來想寫一個搶樓的腳本的,後來發現搶樓的被封號了-_-,就放棄了)
對於使用的庫,python2 與 python3 有點不同,我學的是python3
先用的是urllib.request,後來用requests(第三方庫),在後來接觸Scrapy(也是第三方庫)
現在因為事情多了,就把python放下了,准備寒假寫一些腳本,畢竟python不會有期末考試...
我的個人經歷,希望可以幫到你。
Ⅹ python爬蟲使用request發送get和post請求
輸出為一個網頁的 html 代碼;
輸出為一個網頁的 html 代碼;
輸出為一個網頁的 html 代碼;
輸出為一個網頁的 html 代碼;
輸出內容如下:
輸出內容如下:
輸出內容如下:
輸出結果為一個網頁的 html 代碼;
輸出結果如下:
其他的參數和 GET 一樣,直接使用即可,這里就不再一一舉例了。
輸出信息如下:
剩餘內容請轉至VX公眾號 「運維家」 ,回復 「170」 查看。
------ 「運維家」 ,回復 「170」 ------
------ 「運維家」 ,回復 「170」 ------
------ 「運維家」 ,回復 「170」 ------
linux卸載硬碟,win7共享linux,linuxgdal安裝,Linux7忘記密碼,linux怎麼進入文件的子目錄,高通開源代碼linux,linuxusr大小,重啟伺服器的linux命令,linux的jdk怎麼安裝啊;
linuxtar文件打不開,linux常用狀態檢測,linux成功開機界面,linux七種文件,linux命令,Linux+刪除數據的命令,linux自動監聽重啟伺服器,如何快速擔任linux運維,Linux返回到波浪線,linux大數據架構搭建。